

RELATÓRIO DE MONITORAMENTO ACÚSTICO - AEROPORTO DE ARACAJÚ

Junho de 2023

Contratante

Executor

RELATÓRIO DE MONITORAMENTO ACÚSTICO

Aeroporto de Aracajú - SBAR

junho de 2023

SUMÁRIO

1.	INTRODUÇÃO	
2.	AEROPORTO DE ARACAJÚ	8
3.	METODOLOGIA	9
3.1.	MEDIDAS ACÚSTICAS	9
3.2.	SIMULAÇÕES	. 12
3.3.	IDENTIFICAÇÃO DO RECEPTORES POTENCIALMENTE CRÍTICOS (RPC)	. 12
4.	RESULTADOS	. 14
4.1.	MEDIÇÕES ACÚSTICAS	. 14
4.2.	SIMULAÇÕES	. 14
4.3.	ESTIMATIVA DO PERCENTUAL DE PESSOAS COM ALTO INCÔMODO (AI)	. 15
5.	CONSIDERAÇÕES FINAIS	. 17
APÊI	NDICE 1 – REGISTRO FOTOGRÁFICO DO MONITORAMENTO ACÚSTICO	. 18
APÊI	NDICE 2 – RESULTADOS DETALHADO DO MONITORAMENTO ACÚSTICO	. 26
APÊI	NDICE 3 - DADOS DA OPERAÇÃO DO AEROPORTO	. 37
APÊI	NDICE 4 - MEMÓRIA DE CÁLCULO – AEDT	. 44
APÊI	NDICE 5 – EQUIPE TÉCNICA	. 51
ANE	XO 1 – CARTA DO AERÓDROMO	. 52
ANE	XO 2 – TABELA RBAC 161	. 54
ANE	XO 3 – CERTIFICADO DE CALIBRAÇÃO DOS EQUIPAMENTOS	. 56
ANE	XO 4 – ANOTAÇÃO DE RESPONSABILIDADE TÉCNICA (ART)	104

Lista de Figuras

Figura 1 - Localização do SBAR	8
Figura 2 – Nível de pressão sonora durante um evento aeronáutico	. 10
Figura 3 – Níveis de pressão sonora ao longo do tempo (longo prazo)	. 11
Figura 4 – Níveis de pressão sonora ao longo do tempo, período específico	. 11
Figura 5 - Curvas de níveis simuladas e os receptores críticos (RCP)	. 16
Figura 6 - Registro fotográfico RPC 01	. 18
Figura 7 - Registro fotográfico RPC 01	. 18
Figura 8 - Registro fotográfico RPC 01	. 19
Figura 9 - Registro fotográfico RPC 02	. 20
Figura 10 - Registro fotográfico RPC 02	. 20
Figura 11 - Registro fotográfico RPC 02	. 21
Figura 12 - Registro fotográfico - RPC 03	. 22
Figura 13 - Registro fotográfico - RPC 03	. 22
Figura 14 - Registro fotográfico - RPC 03	. 23
Figura 15 - Registro fotográfico - RPC 04	. 24
Figura 16 - Registro fotográfico - RPC 04	. 24
Figura 17 - Registro fotográfico - RPC 04	. 25
Figura 18 - Níveis de pressão sonora ao longo do tempo	. 26
Figura 19 - Espectro em bandas de 1/3 de oitavas	. 26
Figura 20 - Níveis de pressão sonora ao longo do tempo	. 28
Figura 21 - Níveis de pressão sonora ao longo do tempo	. 28
Figura 22 - Espectro em bandas de 1/3 de oitavas	. 29
Figura 23 - Espectro em bandas de 1/3 de oitavas	. 29
Figura 24 - Níveis de pressão sonora medido ao longo do tempo	. 31
Figura 25 - Espectro em bandas de 1/3 de oitavas	. 31
Figura 26 - Níveis de pressão sonora ao longo do tempo	. 32
Figura 27 - Espectro em bandas de 1/3 de oitavas	. 32
Figura 28 - Níveis de pressão sonora ao longo do tempo	. 34
Figura 29 - Níveis de pressão sonora ao longo do tempo	. 34
Figura 30 - Espectro em bandas de 1/3 de oitavas	. 35
Figura 31 - Espectro em bandas de 1/3 de oitavas	. 35

LISTA DE TABELAS

Tabela 1 - Informações sobre o aeródromo	8
Tabela 2 - Descrição dos equipamentos utilizados no monitoramento	9
Tabela 3 - Identificação e coordenadas geográficas dos RPC	13
Tabela 4 - Resumo dos resultados nos RPC	14
Tabela 5 - Resultados das simulações	14
Tabela 6 - Estimativa do percentual de alto incômodo	15
Tabela 7 – Resumo dos resultados	27
Tabela 8 - Resultados	27
Tabela 9 – Resumo dos resultados	30
Tabela 10 - Resultados dos níveis de pressão sonora	30
Tabela 11 – Resumo dos resultados	33
Tabela 12 - Resultados dos níveis de pressão sonora	33
Tabela 13 – Resumo dos resultados	36
Tabela 14 - Resultados dos níveis de pressão sonora	36

1. INTRODUÇÃO

Este documento apresenta o relatório do monitoramento acústico realizado em dez RPC (Receptores Potencialmente Críticos) localizados na vizinhança do Aeroporto de Aracajú (SBAR).

O monitoramento foi realizado de acordo com a ABNT NBR 16425-2 (2020), desde a escolha dos receptores potencialmente críticos (RPC), locais de colocação dos equipamentos de medição, período e tempo de coleta de dados. O monitoramento consistiu em medições e simulações computacionais.

Para as simulações foi utilizado o *software* de modelagem AEDT 3.0d (*Aviation Environmental Design Tool*), desenvolvido pelo FAA (*Federal Aviation Administration* – EUA). Esse programa utiliza informações de rotas de voos, frota de aeronaves por aeroporto, características das aeronaves, modelos de terreno, entre outras. O AEDT 3.0d foi projetado para estimar os efeitos médios de longo prazo utilizando um *input* baseado em uma média anual.

Os resultados foram comparados com o RBAC 161 (2021) e também foram estimados o percentual de pessoas com alto incômodo %AI, de acordo com a ABNT NBR 16425-2 (2020).

2. AEROPORTO DE ARACAJÚ

O Aeroporto Internacional de Aracaju está situado em de Aracajú, no estado de Sergipe. Ocupa uma área de mais de 3.874.745,28 m². Opera com voos domésticos para o nordeste brasileiro e também São Paulo e Brasília. Fica situado a 12 km do centro de Aracajú a 3,5 km das principais praias e hotéis. É operado pela AENA Brasil e sua carta ADC (*aerodrome chart*), com informações da pista, encontra-se no Anexo 1. A Figura 1 apresenta a localização e a Tabela 1 as informações do Aeroporto.

Figura 1 - Localização do SBAR

Tabela 1 - Informações sobre o aeródromo

Identificação	Aeroporto de Aracajú
Operador Aeroportuário	AENA Brasil
Designador ICAO	SBAR
Município/estado	Aracajú / Sergipe
Coordenadas Geográficas	Lat.: 10° 59' 07" W Long.: 37° 04' 49" S
Velocidade média do vento	14 km/h
Temperatura de referência	31,0 °C
Elevação do aeródromo	7 m
Pressão atmosférica	1012 mBar

3. METODOLOGIA

3.1. Medidas Acústicas

O monitoramento acústico e as medidas foram realizadas segundo a ABNT NBR 16425-2 (2020). A **detecção, a classificação e validação** dos eventos sonoros foram realizadas por meio da análise dos gráficos dos níveis de pressão sonora ao longo do tempo e do áudio gravado, além do *software* de detecção automática de sobrevoo de aeronaves.

As estações que compõem o sistema de monitoramento sonoro, estão apresentados na Tabela 2 e atendem aos requisitos da ABNT NBR 16425-2 (2020). As condições gerais de medição e calibração dos equipamentos atendem a ABNT NBR 16425-1. O *software* utilizado para análise dos dados foi o dBTraid, da 01 dB.

Equipamento	Modelo	Número de Série	Fabricante	Certificado de calibração (RBC)	Prazo de validade da calibração
Sonômetro	Fusion	13292	01dB	11893-554	25/07/2024
Sonômetro	Fusion	11532	01dB	138.684	23/09/2024
Sonômetro	Fusion	14719	01dB	12089-382	06/02/2025
Sonômetro	Solo	65236	01dB	131.969	03/02/2024
Calibrador acústico	Cal21	34113633	01dB	131.852	30/01/2024

Tabela 2 - Descrição dos equipamentos utilizados no monitoramento

Os sonômetros foram ajustados utilizando o calibrador acoplado ao microfone antes e ao final das medições. Para o conjunto de avaliações realizadas foi verificado que o valor dos níveis de pressão não apresentou diferença significativa, entre os valores aferidos, desta forma nenhuma correção nos níveis de pressão sonora foi necessário.

De acordo com a ABNT NBR 16425-2 (2020), para as medições efetuadas em um receptor potencialmente crítico (RPC), o ponto de medição deve estar localizado próximo a áreas normalmente ocupadas (por exemplo: terraço, quintal, fachada etc.), onde o impacto do ruído aeronáutico possivelmente interfere nas atividades associadas à sua utilização (áreas sensíveis ao ruído). Segundo essa norma, tem-se que:

- ruído de sobrevoo: é o ruído produzido pela passagem de uma aeronave, sob a condição de voo, que se inicia quando o som da aeronave puder ser distinguido do som residual e termina quando o som da aeronave deixar de ser distinguível do som residual. O ruído de sobrevoo não está associado ao ruído produzido pelas operações de decolagem, pouso ou toque e arremetida.
- ruído de pouso: é o ruído produzido pela operação de pouso, que se inicia quando o som da aeronave, em fase de aproximação para pouso, torna-se distinguível do som residual, e termina com a saída da aeronave da pista de pouso e decolagem ou, após o seu toque em solo, quando o som da aeronave deixar de ser distinguível do som residual.

- ruído de taxi: é o ruído produzido pela operação de uma aeronave em movimento sobre a superfície de um aeródromo, excluída as operações de decolagem, pouso ou toque e arremetida. Para a medição dos níveis de pressão sonora provenientes das operações de taxi, aplica-se a ABNT NBR 10151.
- ruído de teste de motor: é o ruído produzido pela operação uma aeronave, parada em solo, para fina de teste de motor, que se inicia quando o som da aeronave puder ser distinguido do som residual, e termina quando o som da aeronave deixar de ser distinguível do som residual. Para a medição dos níveis de pressão sonora provenientes de testes de motores, aplicam-se as provisões da ABNT NBR 10151, em função da natureza estática da fonte.

De acordo com a ABNT NBR 16425-2 (2020), o som residual durante um evento aeronáutico produz um aumento no nível de pressão sonora. Deste modo, a faixa do som residual e sua variação devem ser consideradas. A Figura2 ilustra uma situação típica de nível de pressão sonora durante um evento aeronáutico.

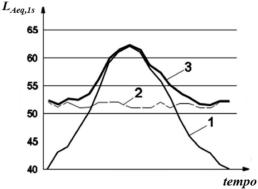


Figura 2 – Nível de pressão sonora durante um evento aeronáutico Fonte: ABNT NBR 16425-2 (2020), pag. 36

Legenda:

- 1 nível de pressão sonora da aeronave (som específico)
- 2 nível de pressão sonora do som residual, $L_{residual}$
- 3 nível de pressão sonora medido (som total), L_{medido}

Os algoritmos de identificação automática são eficazes apenas com som residual baixo nos quais os ruídos referentes aos eventos aeronáuticos estão 20 dB acima do som residual. Dessa forma, em áreas densamente urbanizadas, tais algoritmos revelam-se muitas vezes ineficazes. Sendo assim, uma metodologia complementar baseada na análise dos perfis dos eventos aeronáuticos, em conjunto com a escuta dos sons gravados pelos equipamentos foi utilizada. Para os eventos aeronáuticos foram identificados o início, fim e duração média.

Quando o nível pressão sonora referente ao som residual for menor do que o nível de pressão sonora medido, uma correção de níveis pode ser determinada a partir da equação seguinte.

$$\Delta L = -10 \cdot \log_{10} \left(1 - 10^{-0.1(L_{medido} - L_{residual})} \right) dB \tag{1}$$

Nesta avaliação, além do sobrevoo de aeronaves observadas em todos os pontos analisados, foram identificados ruído de pouso e decolagem e ruído taxi, estes detectados, classificado e validados, com o auxílio do áudio gravado.

A seguir, é apresentado um exemplo da detecção, classificação e validação de um evento sonoro de sobrevoo de aeronave. A partir do gráfico, dos níveis de pressão sonora ao longo do tempo (Figura 3), seleciona-se um período específico sobre o qual serão realizadas as análises, conforme mostra a Figura 4.

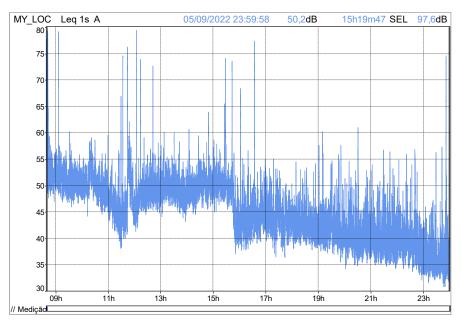


Figura 3 – Níveis de pressão sonora ao longo do tempo (longo prazo)

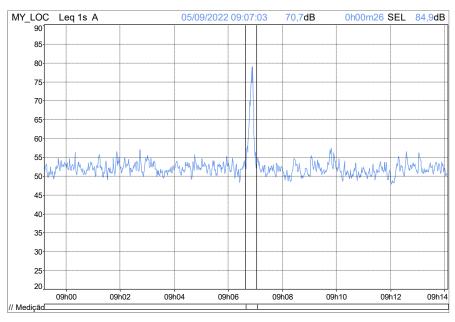


Figura 4 – Níveis de pressão sonora ao longo do tempo, período específico

Para a avaliação do som específico foram considerados os eventos aeronáuticos detectados, classificado e validados. Na avaliação do som residual, os sons principais são retirados e o restante é considerado como sendo som residual.

A medição do nível de pressão sonora do som residual foi realizada segundo o item 10.3.3 da ABNT NBR 16425-2 (2020) e o processo de classificação dos eventos sonoros de acordo com o item 10.4.

O parâmetro L_{dn} é definido a partir do L_{dia} e L_{noite}

$$L_{dn} = 10 \times \log \left[\frac{1}{24} (15 \times 10^{\frac{L_{dia}}{10}} + 9 \times 10^{\frac{L_{noite} + 10}{10}}) \right]$$
 (2)

 L_{dia} corresponde ao nível de pressão sonora equivalente no período diurno, ente 7 e 22 horas. L_{noite} corresponde ao nível de pressão sonora equivalente no período diurno, ente 22 e 7 horas.

Utilizando as relações de exposição-resposta para o incômodo sonoro, apresentadas no anexo F da ABNT NBR 16425-2 (2020), foi estimado o percentual de pessoas com alto incômodo devido aos eventos aeronáuticos. A relação de exposição-resposta são válidas para a faixa de níveis sonoros dia-noite, L_{dn} , compreendida entre 45 dB e 75 dB. A equação (3) expressa a expansão polinomial.

$$\%AI = -1.395 \times 10^{-4} (L_{dn} - 42)^3 + 4.081 \times 10^{-2} (L_{dn} - 42)^2 + 0.342 (L_{dn} - 42)$$
 (3)

3.2. Simulações

As curvas de ruído e simulações foram geradas no *software* AEDT (Aviation Environmental Design Tool) versão 3.0d. Os dados operacionais foram fornecidos pela empresa AENA Brasil, operadora do Aeroporto.

As cartas SID e IAC adotadas são para a pista existente (mostrada na Carta do Aeródromo – Anexo 1) e foram obtidas no sítio (AISWEB) do Serviço de Informação Aeronáutica. A memória de cálculo com todos os dados utilizada na modelagem está apresentada no Apêndice 4.

3.3. Identificação do Receptores Potencialmente Críticos (RPC)

A Tabela 3 identifica os RPC do monitoramento acústico (01, 02, 03 e 04) e os receptores das simulações (1 a 10).

RELATÓRIO DE MONITORAMENTO ACÚSTICO – AEROPORTO DE ARACAJÚ 1/2023

Tabela 3 - Identificação e coordenadas geográficas dos RPC

ID	Local	Latitude	Longitude
RPC 01	EMEF Papa João Paulo II. Av. A3, s/n, Santa Maria.	-10.989030°	-37.098196°
RPC 02	Condomínio Portal da Cidade. Av. Sen. Júlio César Leite, 1445 — Apto 203. Aeroporto.	-10.988496°	-37.072187°
RPC 03	Condomínio Vila dos Pássaros, rua Tom Jobim, 140 Bloco Pardal, apto.204.	-10.979545°	-37.094695°
RPC 04	Condomínio Estrela do Mar, rua François Hoald 700, Edifício Búzios, apto. 303. Atalaia.	-10.988462°	-37.058972°
RPC 05	Condomínio Santa Cecília - Complexo residencial. R. Napoleão Dórea, 723 – Atalaia.	-10.987737°	-37.056656°
RPC 06	Colégio Estadual Santos Dumont, Av. Sen. Júlio César Leite, S/N – Atalaia.	-10.986743°	-37.060279°
RPC 07	Missão Cantinho do Céu – Escola. Av. Alexandre Alcino, 18 - Santa Maria.	-10.986841°	-37.094462°
RPC 08	Colégio Nícolas - Centro Educacional. R. Eduardo Abreu, 113 — Atalaia.	-10.987028°	-37.054666°
RPC 09	Hotel Aracaju Express. Av. José Carlos Silva, 290 – Atalaia.	-10.983082°	-37.056003°
RPC 10	Colégio Estadual Alceu Amoroso Lima, R. Alceu Amoroso Lima, S/N – Atalaia.	-10.991079°	-37.079932°

4. RESULTADOS

4.1. Medições Acústicas

As medições acústicas ocorreram no período de 06 a 08 de junho, em quatro receptores potencialmente críticos (RPC). Nos RPC 02, 03 e 04 as medidas foram realizadas no período de 24 horas. No RPC 01, Escola EMEF Papa João Paulo II, ocorreu no turno matutino e vespertino, horário de funcionamento da escola.

A Tabela 4 apresenta o resumo dos resultados das medições, a comparação dos resultados com as curvas do PEZR e a avaliação da conformidade em relação ao PEZR. No Apêndice 1 é apresentado o registro fotográfico das medições e no Apêndice 2 o detalhamento dos resultados das medidas.

ID L_{dn} - (2023) L_{dn} – PEZR Classificação Avaliação (PEZR) RPC 01 40* < 65 Uso público - Escolas **CONFORME** RPC 02 Residencial **CONFORME** 51 < 65 **RPC 03** Residencial **CONFORME** 50 < 65 **RPC 04** < 65 Residencial **CONFORME** 57

Tabela 4 - Resumo dos resultados nos RPC

 $oldsymbol{L_d}$ - Ldia

Os resultados indicam todos os RPC avaliados estão em CONFORMIDADE com o PEZR.

4.2. Simulações

A Tabela 5 apresenta os resultados das simulações para o parâmetro L_{dn} considerando o ano de 2022 e o horizonte futuro, o PEZR, que foi elaborado de acordo com o RBAC 161 (2021). Na última coluna é realizada a comparação entre os valores para a simulação da operação atual e os valores que constam no PEZR.

 L_{dn} Uso Avaliação ID L_{dn} (PEZR)(classificação) (PEZR)**RPC 01** Uso público - Escolas **CONFORME** 41 < 65 RPC 02 Residencial **CONFORME** 50 < 65 Residencial **CONFORME RPC 03** 46 < 65 58 RPC 04 < 65 Residencial **CONFORME** < 65 **RPC 05** 64 Residencial **CONFORME RPC 06** 46 < 65 Uso público - Escolas **CONFORME** Uso público - Escolas **RPC 07** 58 < 65 **CONFORME RPC 08** 61 < 65 Uso público - Escolas **CONFORME RPC 09** 49 Hotel **CONFORME** < 65 **RPC 10** 58 < 65 Uso público - Escolas **CONFORME**

Tabela 5 - Resultados das simulações

Os resultados indicaram os níveis de pressão sonora, indicador L_{dn} avaliados em todos os receptores potencialmente críticos estão em **CONFORMIDADE** com o PEZR atual.

4.3. Estimativa do percentual de pessoas com Alto Incômodo (AI)

Utilizando a equação (3), e os resultados das simulações para os 10 receptores potencialmente críticos, foi calculado o percentual de pessoas com alto incômodo (AI) devido ao ruído aeroviário para cada um dos RPC. Os resultados estão apresentados na Tabela 6.

Tabela 6 - Estimativa do percentual de alto incômodo

Receptor	$L_{dn}\left(dB\right)$	%AI
RPC 01	41	0,2
RPC 02	50	5,3
RPC 03	46	2,0
RPC 04	58	15,3
RPC 05	64	25,8
RPC 06	46	2,0
RPC 07	58	15,3
RPC 08	61	20,3
RPC 09	49	4,3
RPC 10	58	15,3

De acordo com a ABNT NBR 16425-2 (2020), o percentual de pessoas localizadas nos RPC, com alto incômodo devido ao ruído gerado pelas operações do aeroporto variaram entre 0,2 e 25,8%.

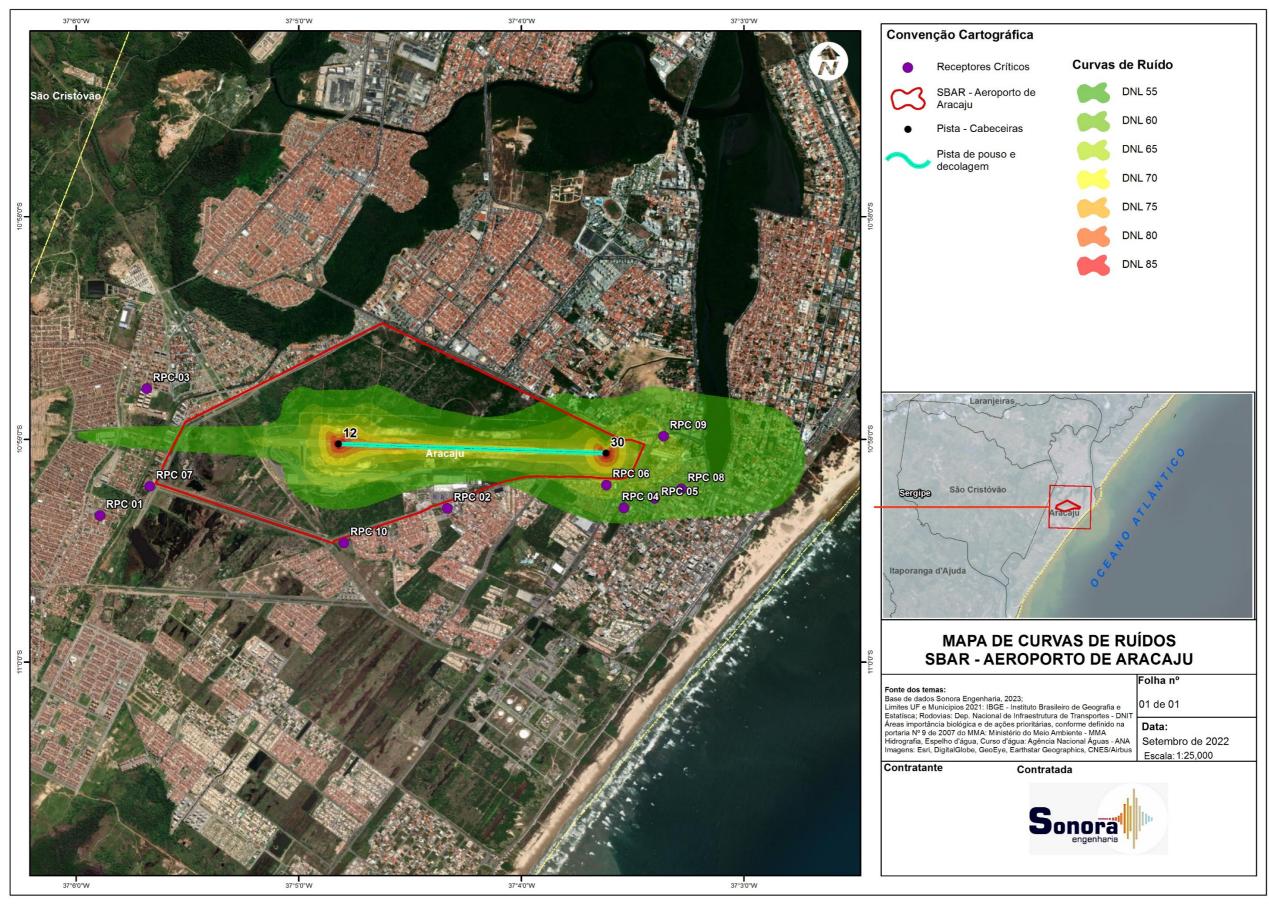


Figura 5 - Curvas de níveis simuladas e os receptores críticos (RCP)

5. CONSIDERAÇÕES FINAIS

O relatório apresenta os resultados das medições acústicas realizadas em 4 receptores potencialmente críticos (RPC) na vizinhança do Aeroporto de Aracajú (SBAR), no período de 05 a 08 de junho de 2023. A escolha dos RPC, assim como o monitoramento acústico foi realizado seguindo as recomendações da ABNT NBR 16425-2 (2020). Além das medições *in situ* foram realizadas simulações para avaliar os níveis de pressão sonora em dez RPC incluindo os receptores onde medições foram realizadas.

Os resultados obtidos foram comparados como uso e ocupação do solo previsto pelo RBAC 161 (2021), que constam no PEZR e classificados como CONFORME e NÃO CONFORME. Todos os receptores potencialmente críticos avaliados, tanto nas medições quanto nas simulações, estão em **CONFORMIDADE** com o PEZR (2022), que seguiu o RBAC 161 (2021).

Apêndice 1 – Registro Fotográfico do Monitoramento Acústico

RPC 01 - EMEF Papa João Paulo II

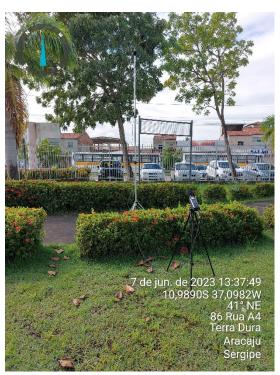


Figura 6 - Registro fotográfico RPC 01

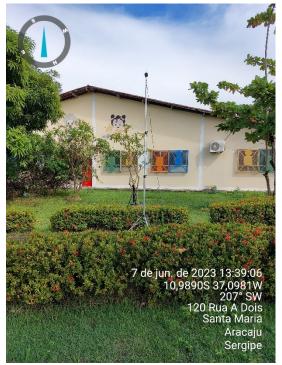


Figura 7 - Registro fotográfico RPC 01



Figura 8 - Registro fotográfico RPC 01

RPC 02 - Condomínio Portal da Cidade

Figura 9 - Registro fotográfico RPC 02

Figura 10 - Registro fotográfico RPC 02

Figura 11 - Registro fotográfico RPC 02

RPC 03 - Condomínio Vila dos Pássaros

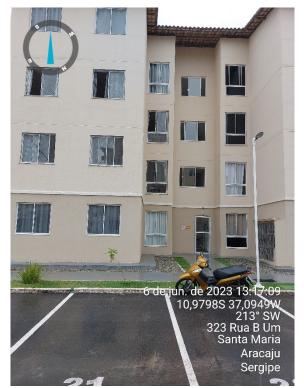


Figura 12 - Registro fotográfico - RPC 03

Figura 13 - Registro fotográfico - RPC 03

Figura 14 - Registro fotográfico - RPC 03

RPC 04 - Condomínio Estrela do Mar

Figura 15 - Registro fotográfico - RPC 04

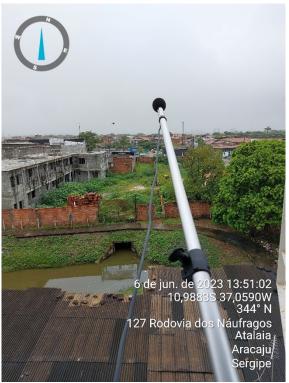


Figura 16 - Registro fotográfico - RPC 04

Figura 17 - Registro fotográfico - RPC 04

Apêndice 2 – Resultados Detalhado do Monitoramento Acústico

RPC 01

As figuras a seguir apresentam os resultados dos níveis de pressão sonora ao longo tempo, e o espectro em bandas de 1/3 de oitavas aferidas.

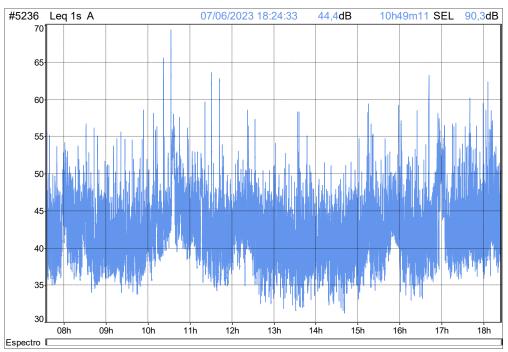


Figura 18 - Níveis de pressão sonora ao longo do tempo

Figura 19 - Espectro em bandas de 1/3 de oitavas

Na tabela a seguir é apresentado o resumo dos dados aferidos. A partir destes resultados foram calculados os parâmetros correspondentes ao L_{dia} , L_{noite} e L_{dn} , referente ao som residual e específico.

Tabela 7 – Resumo dos resultados

Classificação	Período	(dB)
	15:00 às 22:00	51,5
Som total	22:00 às 24:00	47,7
Som total	00:00 às 07:00	48,0
	07:00 às 15:00	52,3
	15:00 às 22:00	48,9
Come was ideal	22:00 às 24:00	46,0
Som residual	00:00 às 07:00	45,2
	07:00 às 15:00	50,9
	15:00 às 22:00	48,0
Som consolling	22:00 às 24:00	42,8
Som específico	00:00 às 07:00	44,8
	07:00 às 15:00	46,7

Tabela 8 - Resultados

Classificação	oção L_{Aeq} (dB)	
Som total	44,4	
Som Residual	42,2	
Som Específico	40,4	

RPC 02

As figuras a seguir apresentam os resultados dos níveis de pressão sonora ao longo tempo, e o espectro em bandas de 1/3 de oitavas aferidas.

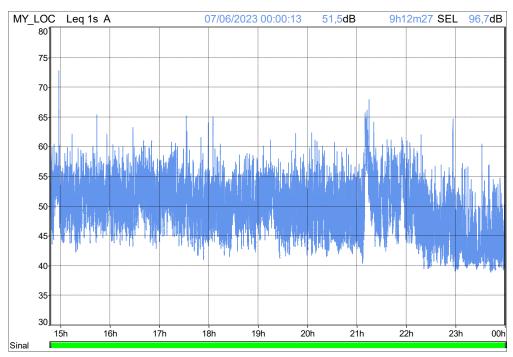


Figura 20 - Níveis de pressão sonora ao longo do tempo

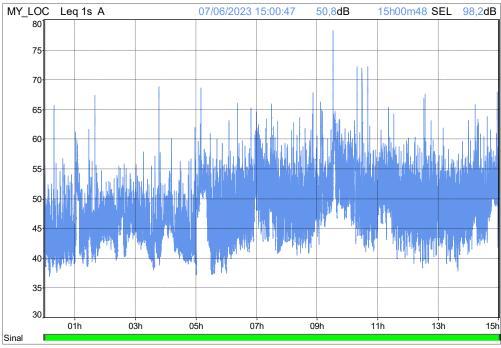


Figura 21 - Níveis de pressão sonora ao longo do tempo

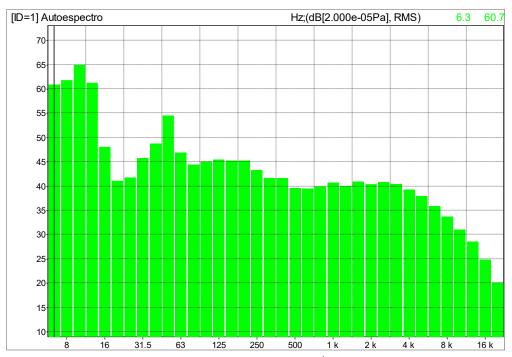


Figura 22 - Espectro em bandas de 1/3 de oitavas

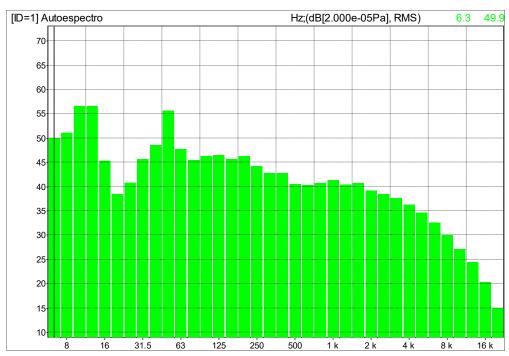


Figura 23 - Espectro em bandas de 1/3 de oitavas

Na tabela a seguir é apresentado o resumo dos dados aferidos, a partir destes resultados foram calculados os parâmetros correspondentes ao L_{dia} , L_{noite} e L_{dn} , referente ao som residual e específico.

Tabela 9 – Resumo dos resultados

Classificação	Período	(dB)
Som total	15:00 às 22:00	51,5
	22:00 às 24:00	47,7
	00:00 às 07:00	48,0
	07:00 às 15:00	52,3
	15:00 às 22:00	48,9
Com veridual	22:00 às 24:00	46,0
Som residual	00:00 às 07:00	45,2
	07:00 às 15:00	50,9
Som específico	15:00 às 22:00	48,0
	22:00 às 24:00	42,8
	00:00 às 07:00	44,8
	07:00 às 15:00	46,7

Tabela 10 - Resultados dos níveis de pressão sonora

Classificação	$L_d(dB)$	$L_n(dB)$	$L_{dn}(dB)$
Som total	51,9	47,9	55,2
Som residual	50,1	45,4	52,9
Som específico	47,4	44,4	51,4

RPC 03

As figuras a seguir apresentam os resultados dos níveis de pressão sonora ao longo tempo, e o espectro em bandas de 1/3 de oitavas aferidas.

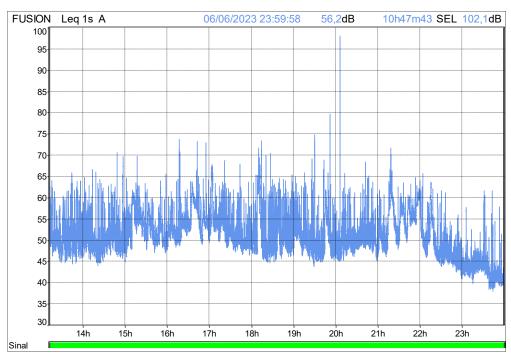


Figura 24 - Níveis de pressão sonora medido ao longo do tempo

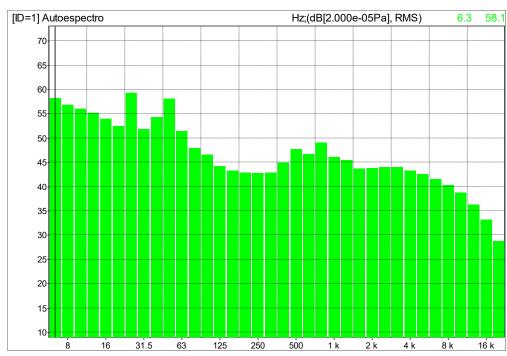


Figura 25 - Espectro em bandas de 1/3 de oitavas

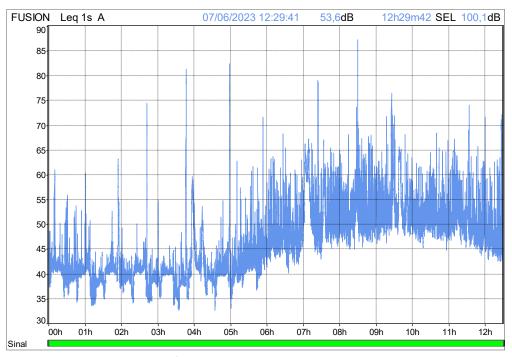


Figura 26 - Níveis de pressão sonora ao longo do tempo

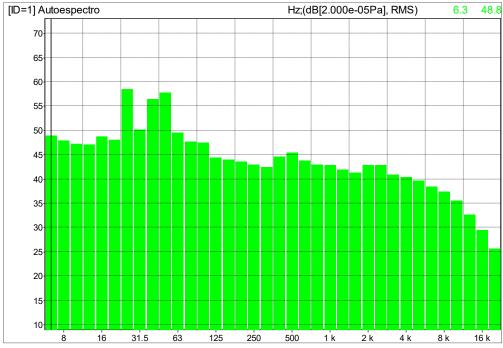


Figura 27 - Espectro em bandas de 1/3 de oitavas

A tabela a seguir é apresentado o resumo dos dados aferidos, a partir desses resultados foram calculados os parâmetros correspondentes ao L_{dia} e L_{dn} , referente ao som residual e específico.

Tabela 11 – Resumo dos resultados

Classificação	Período	(dB)
	13:00 às 22:00	56,9
Com total	22:00 às 24:00	49,6
Som total	00:00 às 07:00	50,0
	07:00 às 13:00	55,9
	13:00 às 22:00	55,3
Som residual	22:00 às 24:00	49,1
Som residual	00:00 às 07:00	49,6
	07:00 às 13:00	54,9
	13:00 às 22:00	51,8
Som consolling	22:00 às 24:00	40,0
Som específico	00:00 às 07:00	39,4
	07:00 às 13:00	49,0

Tabela 12 - Resultados dos níveis de pressão sonora

Classificação	L_{dia}	L_n	L_{dn}
Som total	56,5	49,9	58,1
Som residual	55,1	49,5	57,3
Som específico	50,9	39,1	50,3

RPC 04

As Figuras 31 e 32 apresentas os resultados dos níveis de pressão sonora ao longo de todo o tempo de avaliação. As Figura 33 e 34 o espectro em bandas de 1/3 de oitavas para o RPC 04.

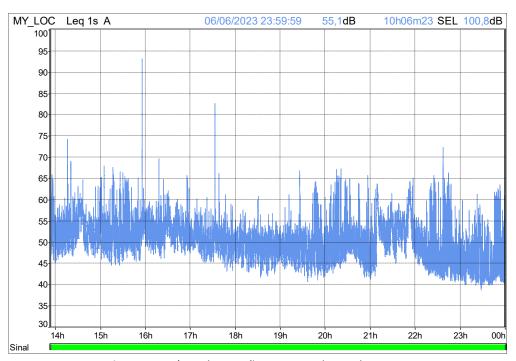


Figura 28 - Níveis de pressão sonora ao longo do tempo

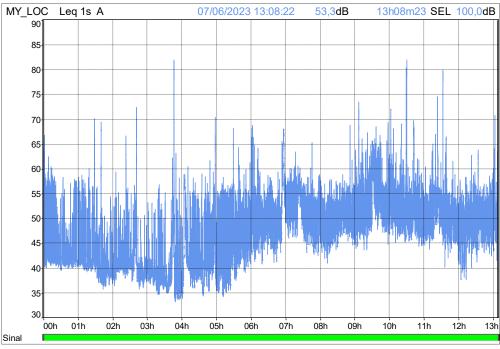


Figura 29 - Níveis de pressão sonora ao longo do tempo

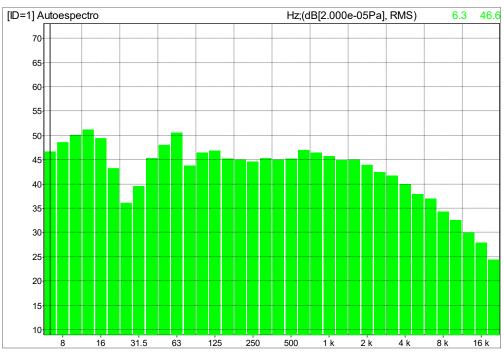


Figura 30 - Espectro em bandas de 1/3 de oitavas

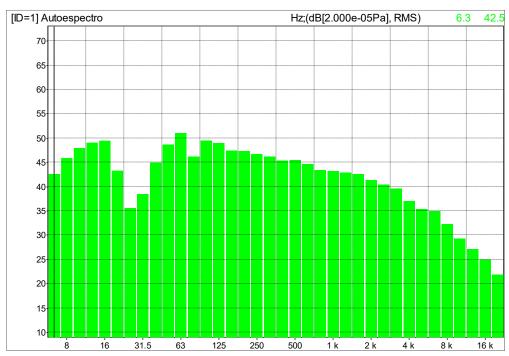


Figura 31 - Espectro em bandas de 1/3 de oitavas

Na tabela a seguir é apresentado o resumo dos dados aferidos para o RPC 04 e a partir desses resultados foram calculados os parâmetros correspondentes ao L_{dia} e L_{dn} , referente ao som residual e específico.

Tabela 13 – Resumo dos resultados

Classificação	Período	(dB)
	14:00 às 22:00	55,7
Som total	22:00 às 24:00	51,2
Som total	00:00 às 07:00	51,5
	07:00 às 14:00	54,7
	14:00 às 22:00	54,1
Som residual	22:00 às 24:00	48,6
30III residual	00:00 às 07:00	44,6
	07:00 às 14:00	48,3
	14:00 às 22:00	50,6
Sam aspecífica	22:00 às 24:00	47,7
Som específico	00:00 às 07:00	50,5
	07:00 às 14:00	53,6

Tabela 14 - Resultados dos níveis de pressão sonora

Classificação	Ldia	Ln	Ldn
Som total	55,3	51,4	58,6
Som residual	52,3	45,9	54,0
Som específico	52,2	50,0	56,8

Apêndice 3 - Dados da operação do aeroporto

User ID	Airframe	Departure Airport	Departure Layout	Arrival Airport	Arrival Layout	Operation Type	Operation Count	Profile	Profile Type	Track	Departure Runway End	Arrival Runway End
APP1D	Boeing 737-700 Series			SBAR	SBAR Default Layout 0	Arrival	0.16	STANDARD	ANP	APP1		12
APP1N	Boeing 737-700 Series			SBAR	SBAR Default Layout 0	Arrival	0.02	STANDARD	ANP	APP1		12
APP1D	Boeing 737-700 Series			SBAR	SBAR Default Layout 1	Arrival	0.21	STANDARD	ANP	APP1		12
APP1N	Boeing 737-700 Series			SBAR	SBAR Default Layout 1	Arrival	0.02	STANDARD	ANP	APP1		12
DEP1D	Boeing 737-700 Series	SBAR	SBAR Defau	ult Layout 0		Departure	0.08	ICAO_A	ANP	DEP1	12	
DEP1N	Boeing 737-700 Series	SBAR	SBAR Defau	ult Layout 0		Departure	0.01	ICAO_A	ANP	DEP1	12	
DEP2D	Boeing 737-700 Series	SBAR	SBAR Defau	ult Layout 0		Departure	0.08	ICAO_A	ANP	DEP2	12	
DEP2N	Boeing 737-700 Series	SBAR	SBAR Defau	ult Layout 0		Departure	0.01	ICAO_A	ANP	DEP2	12	
DEP1D	Boeing 737-700 Series	SBAR	SBAR Defau	ult Layout 1		Departure	0.11	ICAO_A	ANP	DEP1	12	
DEP1N	Boeing 737-700 Series	SBAR	SBAR Defau	ult Layout 1		Departure	0.01	ICAO_A	ANP	DEP1	12	
DEP2D	Boeing 737-700 Series	SBAR	SBAR Defau	ult Layout 1		Departure	0.11	ICAO_A	ANP	DEP2	12	
DEP2N	Boeing 737-700 Series	SBAR	SBAR Defau	ult Layout 1		Departure	0.01	ICAO_A	ANP	DEP2	12	
APP1D	Boeing 737-800 Series			SBAR	SBAR Default Layout 1	Arrival	2.65	STANDARD	ANP	APP1		12
APP1N	Boeing 737-800 Series			SBAR	SBAR Default Layout 1	Arrival	0.29	STANDARD	ANP	APP1		12
APP2D	Boeing 737-800 Series			SBAR	SBAR Default Layout 1	Arrival	0.05	STANDARD	ANP	APP2		30
APP2N	Boeing 737-800 Series			SBAR	SBAR Default Layout 1	Arrival	0.01	STANDARD	ANP	APP2		30
APP1D	Boeing 737-800 Series			SBAR	SBAR Default Layout 0	Arrival	2.86	STANDARD	ANP	APP1		12

User ID	Airframe	Departure Airport	Departure Layout	Arrival Airport	Arrival Layout	Operation Type	Operation Count	Profile	Profile Type	Track	Departure Runway End	Arrival Runway End
APP1N	Boeing 737-800 Series			SBAR	SBAR Default Layout 0	Arrival	0.31	STANDARD	ANP	APP1		12
APP2D	Boeing 737-800 Series			SBAR	SBAR Default Layout 0	Arrival	0.02	STANDARD	ANP	APP2		30
DEP1D	Boeing 737-800 Series	SBAR	SBAR Defau	ılt Layout 1		Departure	1.32	ICAO_A	ANP	DEP1	12	
DEP1N	Boeing 737-800 Series	SBAR	SBAR Defau	ılt Layout 1		Departure	0.15	ICAO_A	ANP	DEP1	12	
DEP2D	Boeing 737-800 Series	SBAR	SBAR Defau	ılt Layout 1		Departure	1.32	ICAO_A	ANP	DEP2	12	
DEP1D	Boeing 737-800 Series	SBAR	SBAR Defau	ılt Layout 0		Departure	1.41	ICAO_A	ANP	DEP1	12	
DEP1N	Boeing 737-800 Series	SBAR	SBAR Defau	ılt Layout 0		Departure	0.19	ICAO_A	ANP	DEP1	12	
DEP2D	Boeing 737-800 Series	SBAR	SBAR Defau	ılt Layout 0		Departure	1.41	ICAO_A	ANP	DEP2	12	
DEP2N	Boeing 737-800 Series	SBAR	SBAR Defau	ılt Layout 0		Departure	0.19	ICAO_A	ANP	DEP2	12	
APP1D	Piper PA-34 Seneca			SBAR	SBAR Default Layout 1	Arrival	0.62	STANDARD	ANP	APP1		12
APP1N	Piper PA-34 Seneca			SBAR	SBAR Default Layout 1	Arrival	0.07	STANDARD	ANP	APP1		12
APP2D	Piper PA-34 Seneca			SBAR	SBAR Default Layout 1	Arrival	0.01	STANDARD	ANP	APP2		30
APP1D	Piper PA-34 Seneca			SBAR	SBAR Default Layout 0	Arrival	0.69	STANDARD	ANP	APP1		12
DEP1D	Piper PA-34 Seneca	SBAR	SBAR Defau	ılt Layout 0		Departure	0.35	STANDARD	ANP	DEP1	12	
DEP2D	Piper PA-34 Seneca	SBAR	SBAR Defau	ılt Layout 0		Departure	0.35	STANDARD	ANP	DEP1	12	
APP1D	Cessna 550 Citation II			SBAR	SBAR Default Layout 1	Arrival	0.57	STANDARD	ANP	APP1		12
APP1N	Cessna 550 Citation II			SBAR	SBAR Default Layout 1	Arrival	0.06	STANDARD	ANP	APP1		12
APP2D	Cessna 550 Citation II			SBAR	SBAR Default Layout 1	Arrival	0.01	STANDARD	ANP	APP2		30

User ID	Airframe	Departure Airport	Departure Layout	Arrival Airport	Arrival Layout	Operation Type	Operation Count	Profile	Profile Type	Track	Departure Runway End	Arrival Runway End
APP1D	Cessna 550 Citation II			SBAR	SBAR Default Layout 0	Arrival	0.61	STANDARD	ANP	APP1		12
APP1N	ATR 72-200			SBAR	SBAR Default Layout 0	Arrival	0.6	STANDARD	ANP	APP1		12
APP1D	ATR 72-600			SBAR	SBAR Default Layout 1	Arrival	4.61	STANDARD	ANP	APP1		12
APP1N	ATR 72-600			SBAR	SBAR Default Layout 1	Arrival	0.51	STANDARD	ANP	APP1		12
APP2D	ATR 72-600			SBAR	SBAR Default Layout 1	Arrival	0.09	STANDARD	ANP	APP2		30
APP2N	ATR 72-600			SBAR	SBAR Default Layout 1	Arrival	0.01	STANDARD	ANP	APP2		30
APP1D	ATR 72-600			SBAR	SBAR Default Layout 0	Arrival	5.36	STANDARD	ANP	APP1		12
DEP1N	ATR 72-200	SBAR	SBAR Defau	ult Layout 0		Departure	0.3	STANDARD	ANP	DEP1	12	
DEP2N	ATR 72-200	SBAR	SBAR Defa	ult Layout 0		Departure	0.3	STANDARD	ANP	DEP2	12	
DEP1D	ATR 72-600	SBAR	SBAR Defau	ult Layout 0		Departure	2.64	STANDARD	ANP	DEP1	12	
DEP2D	ATR 72-600	SBAR	SBAR Defa	ult Layout 0		Departure	2.64	STANDARD	ANP	DEP2	12	
DEP3D	ATR 72-600	SBAR	SBAR Defau	ult Layout 0		Departure	0.05	STANDARD	ANP	DEP3	30	
DEP4D	ATR 72-600	SBAR	SBAR Defau	ult Layout 0		Departure	0.05	STANDARD	ANP	DEP4	30	
DEP1D	ATR 72-600	SBAR	SBAR Defau	ult Layout 1		Departure	2.31	STANDARD	ANP	DEP1	12	
DEP2D	ATR 72-600	SBAR	SBAR Defau	ult Layout 1		Departure	2.31	STANDARD	ANP	DEP2	12	
DEP3D	ATR 72-600	SBAR	SBAR Defau	ult Layout 1		Departure	0.05	STANDARD	ANP	DEP3	30	
DEP4D	ATR 72-600	SBAR	SBAR Defau	ult Layout 1		Departure	0.05	STANDARD	ANP	DEP4	30	
DEP1N	ATR 72-600	SBAR	SBAR Defau	ult Layout 1		Departure	0.26	STANDARD	ANP	DEP1	12	
DEP2N	ATR 72-600	SBAR	SBAR Defau	ult Layout 1		Departure	0.26	STANDARD	ANP	DEP2	12	
DEP3N	ATR 72-600	SBAR	SBAR Defau	ult Layout 1		Departure	0.01	STANDARD	ANP	DEP3	30	
DEP4N	ATR 72-600	SBAR	SBAR Defau	ult Layout 1		Departure	0.01	STANDARD	ANP	DEP4	30	
APP1D	Airbus A321-			SBAR	SBAR Default	Arrival	1.72	STANDARD	ANP	APP1		12
APP1N	NEO Airbus A321- NEO			SBAR	Layout 0 SBAR Default Layout 0	Arrival	0.19	STANDARD	ANP	APP1		12

User ID	Airframe	Departure Airport	Departure Layout	Arrival Airport	Arrival Layout	Operation Type	Operation Count	Profile	Profile Type	Track	Departure Runway End	Arrival Runway End
APP2D	Airbus A321- NEO			SBAR	SBAR Default Layout 0	Arrival	0.01	STANDARD	ANP	APP2		30
APP1D	Airbus A321- NEO			SBAR	SBAR Default Layout 1	Arrival	2.13	STANDARD	ANP	APP1		12
APP1N	Airbus A321- NEO			SBAR	SBAR Default Layout 1	Arrival	0.24	STANDARD	ANP	APP1		12
APP2D	Airbus A321- NEO			SBAR	SBAR Default Layout 1	Arrival	0.04	STANDARD	ANP	APP2		30
DEP1D	Airbus A321- NEO	SBAR	SBAR Defau	ılt Layout 0		Departure	0.96	ICAOA	ANP	DEP1	12	
DEP2D	Airbus A321- NEO	SBAR	SBAR Defau	ılt Layout 0		Departure	0.96	ICAOA	ANP	DEP2	12	
DEP1D	Airbus A321- NEO	SBAR	SBAR Defau	ılt Layout 1		Departure	1.07	ICAOA	ANP	DEP1	12	
DEP1N	Airbus A321- NEO	SBAR	SBAR Defau	ılt Layout 1		Departure	0.12	ICAOA	ANP	DEP1	12	
DEP2D	Airbus A321- NEO	SBAR	SBAR Defau	ılt Layout 1		Departure	1.07	ICAOA	ANP	DEP2	12	
DEP2N	Airbus A321- NEO	SBAR	SBAR Defau	ılt Layout 1		Departure	0.12	ICAOA	ANP	DEP2	12	
DEP3D	Airbus A321- NEO	SBAR	SBAR Defau	ılt Layout 1		Departure	0.02	ICAOA	ANP	DEP3	30	
DEP4D	Airbus A321- NEO	SBAR	SBAR Defa	ılt Layout 1		Departure	0.02	ICAOA	ANP	DEP4	30	
APP1D	Embraer ERJ195- E2			SBAR	SBAR Default Layout 1	Arrival	2.14	STANDARD	ANP	APP1		12
APP1N	Embraer ERJ195- E2			SBAR	SBAR Default Layout 1	Arrival	0.24	STANDARD	ANP	APP1		12
APP2D	Embraer ERJ195- E2			SBAR	SBAR Default Layout 1	Arrival	0.04	STANDARD	ANP	APP2		30
APP1D	Embraer ERJ195- E2			SBAR	SBAR Default Layout 0	Arrival	1.5	STANDARD	ANP	APP1		12
APP1N	Embraer ERJ195- E2			SBAR	SBAR Default Layout 0	Arrival	0.16	STANDARD	ANP	APP1		12
DEP1D	Embraer ERJ195- E2	SBAR	SBAR Defau	ılt Layout 0	·	Departure	0.75	ICAO-A	ANP	DEP1	12	

User ID	Airframe	Departure Airport	Departure Layout	Arrival Airport	Arrival Layout	Operation Type	Operation Count	Profile	Profile Type	Track	Departure Runway End	Arrival Runway End
DEP1N	Embraer ERJ195- E2	SBAR	SBAR Defau	ılt Layout 0		Departure	0.08	ICAO-A	ANP	DEP1	12	
DEP2D	Embraer ERJ195- E2	SBAR	SBAR Defau	ılt Layout 0		Departure	0.75	ICAO-A	ANP	DEP2	12	
DEP2N	Embraer ERJ195- E2	SBAR	SBAR Defau	ılt Layout 0		Departure	0.08	ICAO-A	ANP	DEP2	12	
DEP1D	Cessna 550 Citation II	SBAR	SBAR Defau	ılt Layout 0		Departure	0.31	MODIFIED_AW	ANP	DEP1	12	
DEP2D	Cessna 550 Citation II	SBAR	SBAR Defau	ılt Layout 0		Departure	0.31	MODIFIED_AW	ANP	DEP2	12	
DEP1D	Airbus A320- NEO	SBAR	SBAR Defau	ılt Layout 0		Departure	1.04	ICAO_A	ANP	DEP1	12	
DEP1N	Airbus A320- NEO	SBAR	SBAR Defau	ılt Layout 0		Departure	0.12	ICAO_A	ANP	DEP1	12	
DEP2D	Airbus A320- NEO	SBAR	SBAR Defau	ılt Layout 0		Departure	1.04	ICAO_A	ANP	DEP2	12	
DEP2N	Airbus A320- NEO	SBAR	SBAR Defau	ılt Layout 0		Departure	0.12	ICAO_A	ANP	DEP2	12	
DEP3D	Airbus A320- NEO	SBAR	SBAR Defau	ılt Layout 0		Departure	0.02	ICAO_A	ANP	DEP3	30	
DEP4D	Airbus A320- NEO	SBAR	SBAR Defau	ılt Layout 0		Departure	0.02	ICAO_A	ANP	DEP4	30	
DEP1D	Airbus A320- NEO	SBAR	SBAR Defau	ılt Layout 1		Departure	0.84	ICAO_A	ANP	DEP1	12	
DEP1N	Airbus A320- NEO	SBAR	SBAR Defau	ılt Layout 1		Departure	0.09	ICAO_A	ANP	DEP1	12	
DEP2D	Airbus A320- NEO	SBAR	SBAR Defau	ılt Layout 1		Departure	0.84	ICAO_A	ANP	DEP2	12	
DEP2N	Airbus A320- NEO	SBAR	SBAR Defau	ılt Layout 1		Departure	0.09	ICAO_A	ANP	DEP2	12	
DEP3D	Airbus A320- NEO	SBAR	SBAR Defau	ılt Layout 1		Departure	0.02	ICAO_A	ANP	DEP3	30	
DEP4D	Airbus A320- NEO	SBAR	SBAR Defau	ılt Layout 1		Departure	0.02	ICAO_A	ANP	DEP4	30	
APP1D	Airbus A320- NEO			SBAR	SBAR Default Layout 1	Arrival	1.69	STANDARD	ANP	APP1		12

User ID	Airframe	Departure Airport	Departure Layout	Arrival Airport	Arrival Layout	Operation Type	Operation Count	Profile	Profile Type	Track	Departure Runway End	Arrival Runway End
APP1N	Airbus A320- NEO			SBAR	SBAR Default Layout 1	Arrival	0.19	STANDARD	ANP	APP1		12
APP2D	Airbus A320- NEO			SBAR	SBAR Default Layout 1	Arrival	0.03	STANDARD	ANP	APP2		30
APP1D	Airbus A320- NEO			SBAR	SBAR Default Layout 0	Arrival	2.1	STANDARD	ANP	APP1		12
APP1N	Airbus A320- NEO			SBAR	SBAR Default Layout 0	Arrival	0.24	STANDARD	ANP	APP1		12
DEP2N	Boeing 737-800 Series	SBAR	SBAR Defau	ılt Layout 1		Departure	0.15	ICAO_A	ANP	DEP2	12	
DEP3D	Boeing 737-800 Series	SBAR	SBAR Defau	ılt Layout 1		Departure	0.03	ICAO_A	ANP	DEP3	30	
DEP4D	Boeing 737-800 Series	SBAR	SBAR Defau	ılt Layout 1		Departure	0.03	ICAO_A	ANP	DEP4	30	
DEP1D	Cessna 550 Citation II	SBAR	SBAR Defau	ılt Layout 1		Departure	0.29	MODIFIED_AW	ANP	DEP1	12	
DEP2D	Cessna 550 Citation II	SBAR	SBAR Defau	ılt Layout 1		Departure	0.29	MODIFIED_AW	ANP	DEP2	12	
DEP1N	Cessna 550 Citation II	SBAR	SBAR Defau	ılt Layout 1		Departure	0.03	MODIFIED_AW	ANP	DEP1	12	
DEP2N	Cessna 550 Citation II	SBAR	SBAR Defau	ılt Layout 1		Departure	0.03	MODIFIED_AW	ANP	DEP2	12	
DEP3D	Cessna 550 Citation II	SBAR	SBAR Defau	ılt Layout 1		Departure	0.01	MODIFIED_AW	ANP	DEP3	30	
DEP4D	Cessna 550 Citation II	SBAR	SBAR Defau	ılt Layout 1		Departure	0.01	MODIFIED_AW	ANP	DEP4	30	
DEP1D	Embraer ERJ195- E2	SBAR	SBAR Defau	ılt Layout 1		Departure	1.07	ICAO-A	ANP	DEP1	12	
DEP1N	Embraer ERJ195- E2	SBAR	SBAR Defau	ılt Layout 1		Departure	0.12	ICAO-A	ANP	DEP1	12	
DEP2D	Embraer ERJ195- E2	SBAR	SBAR Defau	ılt Layout 1		Departure	1.07	ICAO-A	ANP	DEP2	12	
DEP2N	Embraer ERJ195- E2	SBAR	SBAR Defau	ılt Layout 1		Departure	0.12	ICAO-A	ANP	DEP2	12	
DEP3D	Embraer ERJ195- E2	SBAR	SBAR Defau	ılt Layout 1		Departure	0.02	ICAO-A	ANP	DEP3	30	

User ID	Airframe	Departure Airport	Departure Layout	Arrival Airport	Arrival Layout	Operation Type	Operation Count	Profile	Profile Type	Track	Departure Runway End	Arrival Runway End
DEP4D	Embraer ERJ195- E2	SBAR	SBAR Default	: Layout 1		Departure	0.02	ICAO-A	ANP	DEP4	30	
DEP1D	Piper PA-34 Seneca	SBAR	SBAR Default	Layout 1		Departure	0.31	STANDARD	ANP	DEP1	12	
DEP2D	Piper PA-34 Seneca	SBAR	SBAR Default	Layout 1		Departure	0.31	STANDARD	ANP	DEP2	12	
DEP3D	Piper PA-34 Seneca	SBAR	SBAR Default	Layout 1		Departure	0.01	STANDARD	ANP	DEP3	30	
DEP4D	Piper PA-34 Seneca	SBAR	SBAR Default	Layout 1		Departure	0.01	STANDARD	ANP	DEP4	30	
DEP1N	Piper PA-34 Seneca	SBAR	SBAR Default	Layout 1		Departure	0.03	STANDARD	ANP	DEP1	12	
DEP2N	Piper PA-34 Seneca	SBAR	SBAR Default	Layout 1		Departure	0.03	STANDARD	ANP	DEP2	12	

Apêndice 4 - Memória de Cálculo - AEDT

Study Input Report

Study Information

C (0 /2022 F 25 20 DM

Report Date: 6/9/2023 5:35:38 PM

Study Name: SBAR_Study

Description: SBAR

Study Type: NoiseAndEmissions

Mass Units: Kilograms Use Metric Units: No

.....

Study Database Information

Study Database Version: 1.81.0

Airport Layouts

Layout Name: SBAR Default Layout 0

Airport Name: SANTA MARIA
Airport Codes: AJU, SBAR

Airport Description: Country: BR

State:

City: ARACAJU

Latitude: -10.984000 degrees
Longitude: -37.070333 degrees
Elevation: 23.000000 feet

Runway: 30/12 Length: 7190 feet Width: 150 feet

Runway End: 30 Latitude: -10.984367 degrees Longitude: -37.060307 degrees

Elevation: 22.000000 feet

Approach Displaced Threshold: 0 feet
Departure Displaced Threshold: 0 feet

Crossing Height: 50 feet Glide Slope: 0.000000 deg

Change in Headwind: 0%

Effective Date: 1/1/1900 Expiration Date: 6/6/2079

Runway End: 12

Latitude: -10.983686 degrees
Longitude: -37.080349 degrees
Elevation: 23.000000 feet

Approach Displaced Threshold: 0 feet
Departure Displaced Threshold: 0 feet

Crossing Height: 50 feet
Glide Slope: 0.000000 deg

Change in Headwind: 0%

Effective Date: 1/1/1900 Expiration Date: 6/6/2079

Runway: 30/12

Length: 7190 feet Width: 150 feet Runway End: 30

Latitude: -10.984367 degrees
Longitude: -37.060307 degrees
Elevation: 22.000000 feet

Approach Displaced Threshold: 0 feet
Departure Displaced Threshold: 0 feet
Crossing Height: 50 feet

Glide Slope: 0.000000 deg

Change in Headwind: 0%

Effective Date: 1/1/1900 Expiration Date: 6/6/2079

Runway End: 12

Latitude: -10.983686 degrees
Longitude: -37.080349 degrees
Elevation: 23.000000 feet

Approach Displaced Threshold: 0 feet
Departure Displaced Threshold: 0 feet

Crossing Height: 50 feet
Glide Slope: 0.000000 deg

Change in Headwind: 0%

Effective Date: 1/1/1900 Expiration Date: 6/6/2079

Gate: G-1

Latitude: -10.986529 Longitude: -37.072141 Elevation: 23.000000 feet

Aircraft Size: ANY SigmaY0: 16 SigmaZ0: 3

Release Height: 4.921260 feet

Layout Name: SBAR Default Layout 1

Airport Name: SANTA MARIA Airport Codes: AJU, SBAR

Airport Description: Country: BR

State:

City: ARACAJU

Latitude: -10.984000 degrees
Longitude: -37.070333 degrees
Elevation: 23.000000 feet

Runway: 30/12 Length: 7190 feet Width: 150 feet Runway End: 30

Latitude: -10.984367 degrees
Longitude: -37.060307 degrees
Elevation: 22.000000 feet

Approach Displaced Threshold: 0 feet Departure Displaced Threshold: 0 feet

Crossing Height: 50 feet
Glide Slope: 0.000000 deg

0%

Change in Headwind:

Effective Date: 1/1/1900 Expiration Date: 6/6/2079

Runway End: 12

Latitude: -10.983686 degrees Longitude: -37.080349 degrees Elevation: 23.000000 feet

Approach Displaced Threshold: 0 feet Departure Displaced Threshold: 0 feet

Crossing Height: 50 feet

Glide Slope: 0.000000 deg

Change in Headwind: 0%

Effective Date: 1/1/1900 Expiration Date: 6/6/2079

Runway: 30/12 Length: 7190 feet Width: 150 feet Runway End: 30

Latitude: -10.984367 degrees
Longitude: -37.060307 degrees
Elevation: 22.000000 feet

Approach Displaced Threshold: 0 feet Departure Displaced Threshold: 0 feet

Crossing Height: 50 feet Glide Slope: 0.000000 deg

Change in Headwind: 0%

Effective Date: 1/1/1900 Expiration Date: 6/6/2079

Runway End: 12

Latitude: -10.983686 degrees Longitude: -37.080349 degrees Elevation: 23.000000 feet

Approach Displaced Threshold: 0 feet Departure Displaced Threshold: 0 feet

Crossing Height: 50 feet

Glide Slope: 0.000000 deg

Change in Headwind: 0%

Effective Date: 1/1/1900 Expiration Date: 6/6/2079

Gate: G-1

Latitude: -10.986529 Longitude: -37.072141 Elevation: 23.000000 feet

Aircraft Size: ANY SigmaY0: 16 SigmaZ0: 3

Release Height: 4.921260 feet

Receptor Sets

Receptor Set: RECEPTOR SET GRID

Description: SBAR

Number of receptors: 1000000 Receptor Set Type: Receptor

Receptor Type: Grid

Latitude: -11.151214 degrees Longitude: -37.239711 degrees Elevation: 23.000000 feet

X Count: 1000

Y Count: 1000 X Spacing: 0.02 Y Spacing: 0.02

Receptor Set: RECEPTOR_SET_POINT Description: RECEPTOR_POINT

Number of receptors: 10 Receptor Set Type: Receptor Receptor Type: Point

Annualizations (Scenarios)

Annualization (Scenario): ANNUALIZATION SBAR ALL

Description: ANNUALIZATION_SBAR_ALL Start Time: Saturday, September 17, 2022

Duration: 01 days 00 hours

Air Performance Model: SAE_1845_APM Noise Altitude Cutoff MSL (ft): n/a Mixing Height AFE (ft): 3000 Fuel Sulfur Content: 0.0006 Sulfur Conversion Rate: 0.024

Use Bank Angle: True

Taxi Model: UserTaxiModel

Airport Layouts: SBAR Default Layout 0
Annualization: ANNUALIZATION_SBAR_ALL

Annualization (Scenario): ANNUALIZATION_C2

Description: ANNUALIZATION_C2

Start Time: Saturday, September 17, 2022

Duration: 01 days 00 hours

Air Performance Model: SAE_1845_APM Noise Altitude Cutoff MSL (ft): n/a

Mixing Height AFE (ft): 3000 Fuel Sulfur Content: 0.0006 Sulfur Conversion Rate: 0.024

Use Bank Angle: True

Taxi Model: UserTaxiModel

Airport Layouts: SBAR Default Layout 0, SBAR Default Layout 1

Annualization: ANNUALIZATION C2

Annualization: ANNUALIZATION_SBAR_ALL

Operation group: AOG_SBAR

Description: AOG_SBAR

Start time: 9/17/2022 12:00:00 AM

Duration: 01 days 00 hours Number of aircraft operations: 46

Operation group: NAOG_SBAR

Description: NAOG_SBAR

Start time: 9/17/2022 12:00:00 AM Duration: 01 days 00 hours

Number of non-aircraft operations: 22

Operation group: RU_SBAR

Description: RU SBAR

Start time: 9/17/2022 12:00:00 AM

Duration: 01 days 00 hours Number of runup operations: 4

Annualization: ANNUALIZATION_C2

Operation group: AOP_C2

Description: AOP_C2

Start time: Duration: 9/17/2022 12:00:00 AM

Duration: 01 days 00 hours Number of aircraft operations: 73

Operation group: RU_C2

Description: RU_C2

Start time: 9/17/2022 12:00:00 AM

Duration: 01 days 00 hours Number of runup operations: 4

User-Defined Aircraft Profiles

User-Specified Aircraft Substitutions

Metric Results

Metric Result ID: 11 Metric Result Name: Metric Result Description:

Metric: DNL

Receptor Set: RECEPTOR_SET_GRID Annualization: ANNUALIZATION C2 Run Start Time: 6/9/2023 4:55:39 PM Run End Time: 6/9/2023 5:09:31 PM

Run Status: Complete

Run Options: RunOptions_DNL **Result Storage Options:** Dispersion Results: None Emissions Results: Case Noise Results: Case

Emissions/Performance Modeling Options:

Weather Fidelity: Airport Weather (10YR average)

Check Track Angle: False

Apply Delay & Sequencing Model: False

Calculate Aircraft Engine Startup Emissions: False

Analysis Year (VALE): BADA 4 Modeling Options:

Use BADA Family 4: Use ANP/BADA 3 only Use ANP and BADA 3 Fallback: False Enable reduced thrust taper: False Reduced thrust taper upper limit:

Noise Modeling Options:

Atmospheric Absorption: SAE-ARP-5534

 $Lateral\ Attenuation:\ Apply Lateral\ Attenuation To Props And Helos$

Type Of Ground: Hard Use Terrain: False

Noise Line Of Sight Blockage: False

Fill Terrain: False Terrain Fill In Value:

Do Number Above Noise Level: False

Metric Result ID: 12
Metric Result Name:
Metric Result Description:

Metric: DNL

Receptor Set: RECEPTOR_SET_POINT Annualization: ANNUALIZATION_C2 Run Start Time: 6/9/2023 5:25:42 PM Run End Time: 6/9/2023 5:26:12 PM

Run Status: Complete
Run Options: RunOptions_DNL
Result Storage Options:
Dispersion Results: None
Emissions Results: Case
Noise Results: Case

Emissions/Performance Modeling Options:

Weather Fidelity: Airport Weather (10YR average)

Check Track Angle: False

Apply Delay & Sequencing Model: False

Calculate Aircraft Engine Startup Emissions: False

Analysis Year (VALE): BADA 4 Modeling Options:

Use BADA Family 4: Use ANP/BADA 3 only Use ANP and BADA 3 Fallback: False Enable reduced thrust taper: False Reduced thrust taper upper limit:

Noise Modeling Options:

Atmospheric Absorption: SAE-ARP-5534

 $Lateral\ Attenuation:\ Apply Lateral\ Attenuation To Props And Helos$

Type Of Ground: Hard Use Terrain: False

Noise Line Of Sight Blockage: False

Fill Terrain: False Terrain Fill In Value:

Do Number Above Noise Level: False

Metric Result ID: 13 Metric Result Name: Metric Result Description:

Metric: LAEQD

Receptor Set: RECEPTOR_SET_POINT Annualization: ANNUALIZATION_C2

Run Start Time: 6/9/2023 5:28:57 PM Run End Time: 6/9/2023 5:29:29 PM

Run Status: Complete

Run Options: RunOptions_LAEQD

Result Storage Options:
Dispersion Results: None
Emissions Results: Case
Noise Results: Case

Emissions/Performance Modeling Options:

Weather Fidelity: Airport Weather (10YR average)

Check Track Angle: False

Apply Delay & Sequencing Model: False

Calculate Aircraft Engine Startup Emissions: False

Analysis Year (VALE): BADA 4 Modeling Options:

Use BADA Family 4: Use ANP/BADA 3 only Use ANP and BADA 3 Fallback: False Enable reduced thrust taper: False Reduced thrust taper upper limit:

Noise Modeling Options:

Atmospheric Absorption: SAE-ARP-5534

Lateral Attenuation: ApplyLateralAttenuationToPropsAndHelos

Type Of Ground: Hard Use Terrain: False

Noise Line Of Sight Blockage: False

Fill Terrain: False Terrain Fill In Value:

Do Number Above Noise Level: False

.....

User-defined noise spectral class data for one-third octave bands between 50 Hertz and 10,000 Hertz for bands 17-40

No User Defined Spectral Classes

Apêndice 5 - Equipe Técnica

Equipe responsável - SONORA ENGENHARIA

Dr. Sérgio Luiz Garavelli

Pesquisador e consultor em Engenharia Acústica

Cel: (61)99983-6763

e-mail: sergio.garavelli@sonoraengenharia.com.br

Dr. Edson Benício de Carvalho Júnior

Pesquisador e consultor em Engenharia Acústica

Engenheiro Civil - CREA: 31125/D - DF

Cel: (61)98402-3014

e-mail: edson.benicio@sonoraengenharia.com.br

Gabriela Soares Garavelli

Arquiteta e Urbanista

Registro Nacional: A162012-6

e-mail: gabriela.garavelli@sonoraengenharia.com.br

Lucas Soares Garavelli

Engenheiro de Produção

e-mail: <u>lucas.garavelli@sonoraengenharia.com.br</u>

Giovana de Castro Benício

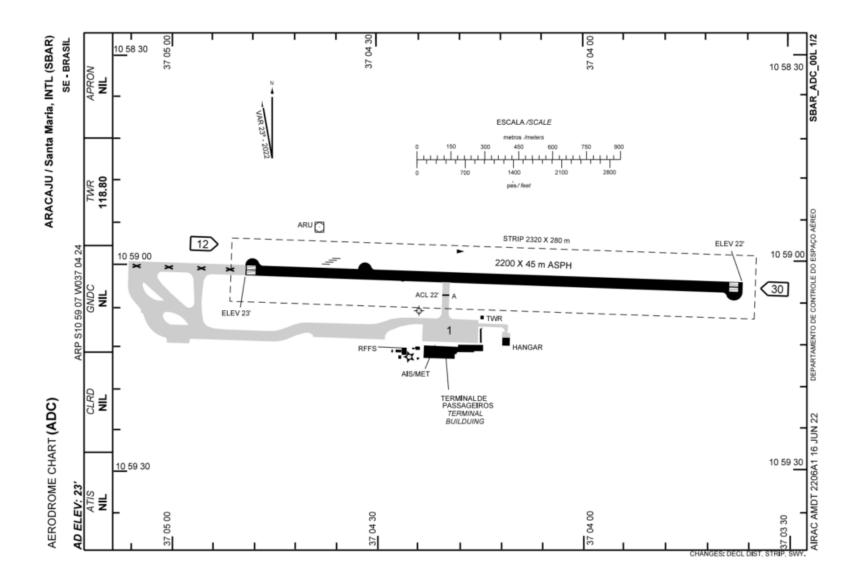
Estagiária de Engenharia

Equipe responsável – AENA BRASIL

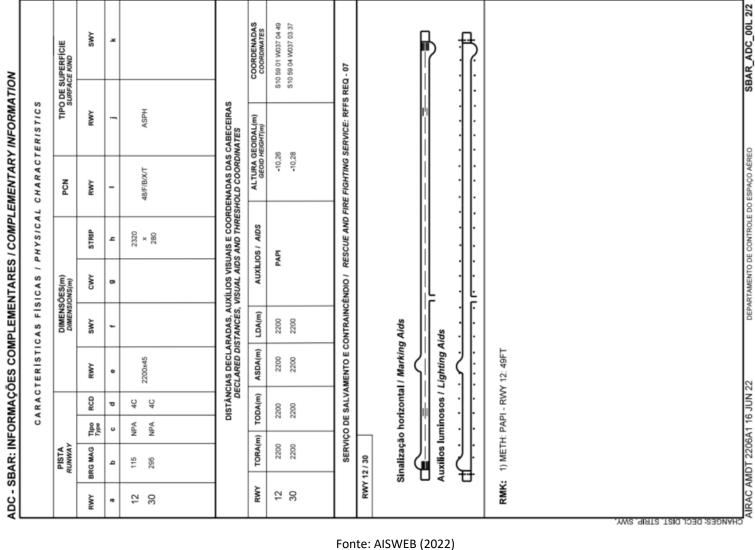
Maurício Martins de Moura

Gerente de Qualidade e Meio Ambiente

Diógenes Barbosa Araújo


Coordenador Corporativo de Meio Ambiente

Diego Bravo Alves


Analista de Meio Ambiente, Qualidade e Safety



Anexo 1 – Carta do Aeródromo

Anexo 2 – Tabela RBAC 161

	Nível de Ruído Médio dia-noite (dB)								
Uso do Solo	< 65	65 – 70	70 – 75	75 – 80	80 – 85	> 85			
Residencial									
Residências uni e multifamiliares	S	N (1)	N (1)	N	N	N			
Alojamentos Temporários (exemplos: hotéis, motéis e pousadas ou empreendimentos equivalentes)	S	N (1)	N (1)	N (1)	N	N			
Locais de permanência prolongada (exemplos: presídios, orfanatos, asilos, quartéis, mosteiros, conventos, apart-hotéis, pensões ou empreendimentos equivalentes)	S	N (1)	N (1)	N	N	N			
Usos Públicos									
Educacional (exemplos: Universidades, bibliotecas, faculdades, creches, escolas, colégios ou empreendimentos equivalentes)	S	N (1)	N (1)	N	N	N			
Saúde (exemplos: hospitais, sanatórios, clínicas, casas de saúde, centros de reabilitação ou empreendimentos equivalentes)	S	25	30	N	N	N			
Igrejas, auditórios e salas de Concerto (exemplos: igrejas, templos, associações religiosas, centros culturais, museus, galerias de arte, cinemas, teatros ou empreendimentos equivalentes)	S	25	30	N	N	N			
Serviços governamentais (exemplos: postos de atendimento, correios, aduanas ou empreendimentos equivalentes)	S	S	25	30	N	N			
Transportes (exemplos: terminais rodoviários, ferroviários, aeroportuários, marítimos, de carga e passageiros ou empreendimentos equivalentes)	S	S	25	30	35	35			
Estacionamentos (exemplo:edifício garagem ou empreendimentos equivalentes)	S	S	25	30	35	N			
Usos Comerciais e serviços									
Escritórios, negócios e profissional liberal (exemplos: escritórios, salas e salões comerciais, consultórios ou empreendimentos equivalentes)	S	S	25	30	N	N			
Comércio atacadista - materiais de construção, equipamentos de grande porte	S	S	25	30	35	N			
Comércio varejista	S	S	25	30	N	N			
Serviços de utilidade pública (exemplos: cemitérios, rematórios, estações de tratamento de água e esgoto, reservatórios de água, geração e distribuição de energia elétrica, Corpo de Bombeiros ou empreendimentos equivalentes)	S	S	25	30	35	N			

Serviços de comunicação (exemplos: estações de rádio e televisão ou empreendimentos equivalentes)	S	S	25	30	N	N
Usos Industriais e de Produção						
Indústrias em geral	S	S	25	30	35	N
Indústrias de precisão (Exemplo: fotografia, óptica)	S	S	25	30	N	N
Agricultura e floresta	S	S (2)	S (3)	S (4)	S (4)	S (4)
Criação de animais, pecuária	S	S (2)	S (3)	N	N	N
Mineração e pesca (Exemplo: produção e extração de recursos naturais)	S	S	S	S	S	S
Usos Recreacionais						
Estádios de esportes ao ar livre, ginásios	S	S	S	N	N	N
Conchas acústicas ao ar livre e anfiteatros	S	N	N	N	N	N
Exposições agropecuárias e zoológicos	S	S	N	N	N	N
Parques, parques de diversões, acampamentos ou empreendimentos equivalentes	S	S	S	N	N	N
Campos de golf, hípicas e parques aquáticos	S	S	25	30	N	N

Fonte: Tabela 2 (RBAC 161, 2021), adaptada

Notas:

S (Sim) = usos do solo e edificações relacionadas compatíveis sem restrições

N (Não) = usos do solo e edificações relacionadas não compatíveis.

25, 30, 35 = usos do solo e edificações relacionadas geralmente compatíveis. Medidas para atingir uma redução de nível de ruído – RR de 25, 30 ou 35 dB devem ser incorporadas no projeto/construção das edificações onde houver permanência prolongada de pessoas.

- (1) Sempre que os órgãos determinarem que os usos devam ser permitidos, devem ser adotadas medidas para atingir uma RR de pelo menos 25 dB.
- (2) Edificações residenciais requerem uma RR de 25 dB.
- (3) Edificações residenciais requerem uma RR de 30 dB.
- (4) Edificações residenciais não são compatíveis

Anexo 3 – Certificado de calibração dos equipamentos

CALILAB - Laboratório de Calibração e Ensaios ISO 17025: Laboratório Acreditado (Accredited Laboratory)

TOTAL SAFETY LTDA.

R Gal Humberto AC Branco, 286 (310) São Caetano do Sul - CEP 09560-380 Tel: (11) 4220-2600 info@totalsafety.com.br www.totalsafety.com.br

CERTIFICADO DE CALIBRAÇÃO

Nº: RBC1-12089-382

RBC - REDE BRASILEIRA DE CALIBRAÇÃO

CLIENTE Acoem Brasil Comércio de Equipamentos Ltda. Processo / O.S.: Alameda dos Maracatins, 780 - Cj. 1903 - Moema 23055

São Paulo - SP - CEP 04089-001

Interessado Sonora Ambiental Projetos Ambientais e Educacionais Ltda

R. das Figueiras, Lote 07 - Loia 66 à 69- 042 Norte (Águas Claras) - Brasília - DF - CEP 71906-750 interested party

Item calibrado Analisador de oitavas (classe 1)

Calibrated item

Marca

Modelo

Número de série

Identificação Identification

01dB

Fusion

14719

(informações adicionais na página 2)

Calilab é um Laboratório de Calibração Acreditado pela acordo com a ABNT NBR ISO/IEC 17025 sob o número

Este certificado atende aos requisitos de acreditação pela

Cgcre que avaliou a competência do laboratório e comprovou a sua rastreabilidade a padrões nacionais de medida (ou ao Sistema Internacional de Unidades – SI).

Este certificado é válido apenas para o item descrito, não sendo extensivo a quaisquer outros, ainda que similares. Este certificado somente pode ser reproduzido em sua forma integral e desde que seja legível. Reproduções parciais ou para fins de divulgação em material publicitário, requerem autorização expressa do laboratório. Nenhuma reprodução poderá ser usada de maneira enganosa.

A versão original deste certificado é um arquivo PDF

Data da calibração

06/02/2023

Assinado de forma digital por Lucas Ferreira DN: cn=Lucas Ferreira, o=Total Safety Ltda., ou=Calilab, email=lucas@totalsafety.co m.br, c=BR

Dados: ۲-۲۲.-۲.-۸ ۱۳:۵۵:۵۷ -- ۲'-- '

Total de páginas

Data da Emissão: Lucas Ferreira Página Signatário Autorizado 06/02/2023 Authorized Signatory 1

A Cgcre é signatária do Acordo de Reconhecimento Mútuo da ILAC (International Laboratory Accreditation Cooperation). A Cgcre é signatária do Acordo de Reconhecimento Mútuo da IAAC (Interamerican Accreditation Cooperation).

Cgcre is Signatory of the ILAC (International Laboratory Accreditation Cooperation) Mutual Recognition Arrangement. Cgcre is signatory of the IAAC (Interamerican Accreditation Cooperation) Mutual Recognition Arrangement.

Página

Laboratório de Calibração Acreditado pela Cocre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

Local da calibração

Sede do laboratório Calilab (conforme indicado na página 1).

Condições ambientais

Temperatura 23.1 ℃ Umidade relativa 38 % Pressão atmosférica

Procedimento

IT-572: Método de calibração de acordo com a ABNT NBR IEC 61672-3:2018 - Eletroacústica - Sonómetros: Testes Periódicos (ad oção idêntica à IEC 61672-3:2013 - Electroacoustics - Sound level meters - Periodic Test). Por este procedimento são realizados testes elétricos bem como testes acústicos. Adicionalmente, são verificados os filtros com o procedimento IT-582, cujo método incorpora testes baseados na IEC 61260 (edição aplicável). A revisão dos procedimentos utilizados são aqueles em vigência na data desta calibração. O conjunto de parâmetros calibrados atende a recomendação do documento DOQ-CGCRE-052.

Plano de calibração

Os critérios de seleção do método atendem aos requisitos da ISO 17025. O plano de calibração é elaborado e pactuado observando; o uso de métodos apropriados, as características do item sob teste e as necessidades do cliente. Para que o serviço de calibração complete sua finalidade, o laboratório recomenda que este certificado de calibração seja submetido a análise crítica, observando os erros de medição reportados e as incertezas associadas a cada teste, avaliando o impacto que cada parâmetro tem sobre as medições. Sempre que pertinente, são incluídas informações adicionais sobre contrato, solicitações do cliente, plano de calibração e configurações do item. Ajustes e reparos não fazem parte do escopo de acreditação.

Imparcialidade e confidencialidade

De acordo com a ISO 17025:2017 o laboratório não pode permitir que pressões comerciais, financeiras ou outras comprometam a imparcialidade. A norma identifica situações de risco à imparcialidade quando os relacionamentos são baseados em propriedade governança, gestão, pessoal, recursos compartilhados, finanças, contratos, marketing (incluindo promoção de marcas) e pagamento de comissões de vendas ou outros benefícios pela indicação de novos clientes. Para assegurar a independência do CALILAB e promover um ambiente neutro, de equidade e sem conflitos de interesses, a Total Safety optou por manter-se livre de quaisquer associações que a identifiquem como uma parte interessada. O CALILAB é, portanto, um LABORATÓRIO DE TERCEIRA PARTE e não se beneficia em detrimento de resultados de calibrações ou ensaios que sejam favoráveis ou desfavoráveis ao prestígio de uma determinada marca ou modelo. O CALILAB também assegura a seus clientes o atendimento de todos os requisitos de confidencialidade previstos na ISO 17025-2017

Incerteza de Medição

Os resultados reportados referem-se à média dos valores encontrados. Cada Incerteza Expandida de Medição (U) relatada é declarada como a incerteza padrão de medição multiplicada pelo fator de abrangência k = 2,00, para uma probabilidade de abrangência de aproximadamente 95%. Quando o fator de abrangência k é um valor diferente de 2,00 o valor de k é reportado juntamente com os resultados. A expressão da incerteza de medição é determinada de acordo o Guia para a Expressão da Incerteza de Medição (GUM). A capacidade de medição e calibração (CMC) do laboratório Calilab é informada no site do Inmetro. Em uma determinada calibração a incerteza reportada poderá ser maior do que a CMC.

Informações adicionais do item sob teste

O sonômetro foi submetido aos testes com um microfone marca G.R.A.S., modelo 40CD, s/n 494365, pré-amplificador marca 01dB, modelo integrado, A calibração foi realizada na configuração de 0° e com cabo modelo RAL 135-10M acoplado ao pré-amplificador. Os resultados reportados no teste acústico incluem as correções de reflexão do corpo do sonômetro, difração do microfone e efeitos do protetor de vento obtidos no manual do fabricante. Software instalado: Versão HW: LST000A FW Aplicação: 2.73.

Rastreabilidade

Gerador: Identificação P144, Certificado DIMCI 1410/2022 (Emitente INMETRO/Laeta)

Calibrador Multi-frequência: Identificação P280, Certificado RBC2-11795-354 (Emitente RBC/Calilab)

Página

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

RESULTADOS DA CALIBRAÇÃO

Indicação inicial e indicação após o eventual ajuste (referência acústica)

carater informativo

indicação	referência (dB)	indicação (dB)
inicial	93.8	93.7

indicação	referência	indicação	I
após eventual	(dB)	(dB)	
ajuste	93,8	93,8	٦

	outer interior	
	frequência	Г
	(Hz)	
- 1	1000.0	

Lin erência (em 8000 Hz, com ponderação A) simulação elétrica

excitação	erro
(dB)	(dB)
134,0	-0,1
133,0	-0,1
132,0	-0,1
131,0	-0,1
130,0	-0,1
129,0	-0,1
124,0	-0,1
119,0	-0,1
114,0	-0,1
109,0	-0,1
104,0	0,0
99,0	0,0
94,0	0,0
89,0	0,0
84,0	0,0
79,0	0,0
74,0	0,0
69,0	0,0
64,0	0,0
59,0	0,0
54,0	0,0
49,0	0,0
44,0	0,0
39,0	0,0
34,0	0,0
29,0	0,1
24,0	0,2
23,0	0,3
22.0	0.4

21,0

20,0

0,5

0,7

tolerância +	tolerância -	
(dB)	(dB)	
0,8	-0,8	
0,8	-0,8	

nível de
referência
(dB)
94,0

limite inferior	1
de linearidade	I
(dB)	l
20	1
	-

incerteza
de 41 a 134
(dB)
0,2

incerteza
de 20 a 40
(dB)
0,2

faixa de	
referência	
(dB)	
134,0	

Página

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

inearidade incluindo controle de faixa - não se aplica

	testes executados conforme aplicável		
П	nível referência		
	(dD)		

<u>earidade inc</u>	<u>luindo cont</u>	<u>role de faixa -</u>
início de faixa	excitação	erro
(dB)	(dB)	(dB)
-	-	-
-	-	
-	-	
-	-	-
-	-	-
-	-	-
-	-	-
-	-	

final de faixa	excitação	erro
(dB)	(dB)	(dB)
	-	-
-	-	
-	-	
	-	-
-	-	-
-	-	-
-	-	
-	-	-

incerteza
(dB)

tolerância (+/-) (dB)

Testes elétricos de curvas de ponderação em frequência A, C e Z (como aplicável)

normalizado em 1000 Hz

-1	frequência	erro pond "A"	tolerância +	tolerância -
-	[Hz]	(dB)	(dB)	(dB)
	63	0,1	1,0	-1,0
	125	0,1	1,0	-1,0
	250	0,2	1,0	-1,0
	500	0,1	1,0	-1,0
ľ	1000	0,2	0,7	-0,7
-	2000	0,2	1,0	-1,0
ı	4000	0,1	1,0	-1,0
Ī	8000	-0,3	1,5	-2,5
-1	16000	-42	2.5	-160

ní	el referência
	(dB)
Т	89,0

incerteza ("A") (dB) 0,2

Prévio ajuste no nível e faixa de referência, na ponderação A

frequência	erro pond "C"	tolerância +	tolerância -
[Hz]	(dB)	(dB)	(dB)
63	0,2	1,0	-1,0
125	0,2	1,0	-1,0
250	0,2	1,0	-1,0
500	0,2	1,0	-1,0
1000	0,2	0,7	-0,7
2000	0,2	1,0	-1,0
4000	0,2	1,0	-1,0
8000	-0,3	1,5	-2,5
16000	-4.2	2,5	-16.0

ní	vel referência
	(dB)
	89,0

incerteza ("C") (dB) 0,2

Prévio ajuste no nível e faixa de referência, na ponderação A

frequência	erro pond "Z"	tolerância +	tolerância -
[Hz]	(dB)	(dB)	(dB)
63	0,2	1,0	-1,0
125	0,2	1,0	-1,0
250	0,2	1,0	-1,0
500	0,2	1,0	-1,0
1000	0,2	0,7	-0,7
2000	0,2	1,0	-1,0
4000	0,2	1,0	-1,0
8000	0,1	1,5	-2,5
16000	0,9	2,5	-16,0

_	na ponderação A				
	nível referência				
	(dB)				
	89,0				

incerteza ("Z") (dB) 0,2

Página

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

Ponderações no tempo e na frequência em 1 kHz (A, C, Z)

testes na faixa de referência (simulação elétrica)

"	inderações no tempo e na nequencia em 1 km2 (A, O, 2)							
1	excitação	erro	erro	tolerância				
1	pond. (A, F)	pond. (C, F)	pond. (Z, F)					
1	(dB)	(dB)	(dB)	(dB)				
ı	94,0	0,0	0,0	0,2				

Τ	incerteza	Γ
ı	(dB)	l
Γ	0,1	

Ponderações no tempo e na frequência em 1 kHz (S, Leq)

testes na faixa de referência (simulação elétrica)

excitação	erro	erro	tolerância	1
pond. (A, F)	pond. (A, S)	pond. (A, Leq)		I
(dB)	(dB)	(dB)	(dB)	ı
94,0	0,0	0,0	0,1	1

incerteza (dB) 0,1

nível referência (dB)

Resposta a pulsos tonais (F; S; LAE)

testes executados conforme aplicável

sposta a puis	oo tollais (, o, eac,				testes
parâmetro sob	largura do trem	nível esperado	erro (dB)	tolerância + (dB)	tolerância - (dB)	incerteza (dB)
teste	(ms)	(dB)				(dB)
Fast	200	133,0	0,0	0,5	-0,5	0,2
Fast	2	116,0	0,0	1,0	-1,5	0,2
Fast	0,25	107,0	-0,2	1,0	-3,0	0,2
Slow	200	126,6	0,0	0,5	-0,5	0,2
Slow	2	107,0	0,0	1,0	-3,0	0,2
LAE	200	127,0	0,0	0,5	-0,5	0,2
LAE	2	107,0	0,0	1,0	-1,5	0,2
LAE	0,25	98,0	-0,1	1,0	-3,0	0,2
	parâmetro sob teste Fast Fast Fast Slow Slow LAE LAE	parametro largura sob do trem teste (ms) Fast 200 Fast 2 Fast 0,25 Slow 200 Slow 2 LAE 200 LAE 2	parametro largura nível sob do trem esperado teste (ms) (dB) Fast 200 133,0 Fast 2 116,0 Fast 0,25 107,0 Slow 200 126,6 Slow 2 107,0 LAE 200 127,0 LAE 2 107,0	parâmetro sob largura do trem nível esperado (dB) erro (dB) Fast 200 133,0 0,0 Fast 2 116,0 0,0 Fast 0,25 107,0 -0,2 Slow 200 126,6 0,0 Slow 2 107,0 0,0 LAE 200 127,0 0,0 LAE 2 107,0 0,0	parâmetro sob largura do trem (ms) nível esperado (dB) erro (dB) tolerância + (dB) Fast 200 133,0 0,0 0,5 Fast 2 116,0 0,0 1,0 Fast 0,25 107,0 -0,2 1,0 Slow 200 126,6 0,0 0,5 Slow 2 107,0 0,0 1,0 LAE 200 127,0 0,0 0,5 LAE 2 107,0 0,0 1,0	sob do trem (ms) esperado (dB) (dB) (dB) (dB) Fast 200 133,0 0,0 0,5 -0,5 Fast 2 116,0 0,0 1,0 -1,5 Fast 0,25 107,0 -0,2 1,0 -3,0 Slow 200 126,6 0,0 0,5 -0,5 Slow 2 107,0 0,0 1,0 -3,0 LAE 200 127,0 0,0 0,5 -0,5 LAE 2 107,0 0,0 1,0 -1,5

Nível sonoro de pico ponderado em C

testes executados conforme aplicável

sinal de	nível esperado	erro	tolerância +	tolerância -	incerteza
teste	(dB)	(dB)	(dB)	(dB)	(dB)
ciclo completo de 8 kHz	129,4	1,9	2,0	-2,0	0,2
semiciclo positivo 500 Hz	128,4	-0,6	1,0	-1,0	0,2
semiciclo negativo 500 Hz	128,4	-0,6	1,0	-1,0	0,2

n	ível referência
	(dB)
	126,0

Indicação de sobrecarga e teste de estabilidade

sobrecarga: aplicável a sonômetros que indicam LAeq,T

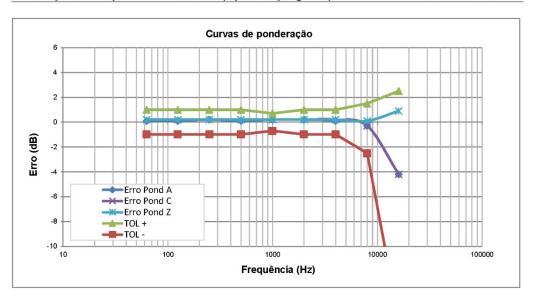
sinal de	indicação	erro absoluto	
teste	(dB)	(dB)	
semiciclo positivo	139,8	0.4	
semiciclo negativo	140,2	0,4	
estabilidade de longa duração	94,0	0,0	
estabilidade em nível alto	137,0	0,0	

tolerância	incerteza
(dB)	(dB)
1,5	0,2
0,1	0,1
0,1	0,1

Ruído auto-gerado

4	ao aato-geraao					
Ī	configuração	ponderação em	especificado	medido	incerteza	Ī
	de entrada	frequência	(dB)	(dB)	(dB)	l
	microfone instalado	A		16,2	0,8	l
	dispositivo de entrada elétrica	Α		7,2		l
	dispositivo de entrada elétrica	С		6,6	0,5	l
	dispositivo de entrada elétrica	Z		20,6]	l

O nível de ruído autogerado (com microfone instalado ou com dispositivo de entrada elétrica) é reportado somente para informação e não é utilizado para avaliar a conformidade a um requisito. A incerteza é interpretada neste contexto. A norma não estabelece um critério para a mesma.



Página

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

Ponderações em frequência - Teste elétrico (representação gráfica)

(dados normalizados em 1000 Hz)

Teste acústico (normalizado em 1000 Hz)

resultados reportados corrigidos para CAMPO LIVRE

2	ite acustico	(HOI Hallzauo	em root	Π2 <i>)</i>		re	Sulta
	frequência	nível de	erro	tolerância +	tolerância -	incerteza	Г
	[Hz]	referência (dB)	(dB)	(dB)	(dB)	(dB)	
	125	94,0	-0,1	1,0	-1,0	0,5	1
	-	-	-	-	-	-	
		-	-	-		-	1
	1000	94,0	0,0	0,7	-0,7	0,4	
		-	-	-	-	-	
	-	-	-	-	-	-]
	8000	94,0	-0,3	1,5	-2,5	0,6	1

	(dB)	
	138	
Г	k	

2.00

O TESTE ACÚSTICO refere-se ao conjunto SONÔMETRO-MICROFONE para o campo sonoro reportado. O sonômetro permaneceu configurado com ponderação C. A menos que o cliente necessite um certificado de calibração exclusivo para microfone, o teste acústico é suficiente para caracterizar a resposta em frequência do conjunto, sonômetro-microne, no contexto da norma IEC 61672. Os resultados reportados correspondem às condições de CAMPO LIVRE, isto é, níveis sonoros equivalentes àqueles que seriam indicados em resposta às ondas sonoras progressivas planas incidentes a partir da direção de referência. O teste acústico foi executado com um calibrador multi-frequência e posterior aplicação de correções. Os resultados reportados no teste acústico não se aplicam a indicações obtidas com incidência aleatória ou em campo de pressão (as indicações nestes campos requerem aplicação de correções ou uma calibração específica no campo de interesse).

Página

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

Filtros de oitavas de classe 1 / Base 2

Lref em 1000 Hz = 135,0 dB

Frequência	L_Sup	L_Inf	16	31,5	63	125	250	500	1000	2000	4000	8000	16000	+/-U	k
fm x 0,063	65,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	2,00
fm x 0,125	74,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,7	2,00
fm x 0,250	93,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	87,8	0,4	2,00
fm x 0,500	117,5		109,4	110,4	110,5	110,5	110,5	110,5	110,5	110,6	110,6	110,5	115,9	0,3	2,00
fm x 0,707	133,0	130,0	132,0	131,9	131,9	131,9	131,9	131,9	132,0	132,0	132,0	131,9	132,0	0,2	2,00
fm x 0,739	135,3	130,0	133,7	133,5	133,6	133,6	133,6	133,6	133,6	133,6	133,6	133,6	133,2	0,2	2,00
fm x 0,771	135,3	133,7	134,5	134,4	134,4	134,4	134,4	134,5	134,5	134,5	134,5	134,4	134,0	0,2	2,00
fm x 0,841	135,3	134,4	134,9	134,9	134,9	134,9	134,9	134,9	135,0	135,0	135,0	134,9	134,7	0,2	2,00
fm x 0,917	135,3	134,6	134,9	134,9	134,9	134,9	135,0	135,0	135,0	135,0	135,0	135,0	134,9	0,2	2,00
fm	135,3	134,7	134,9	134,9	134,9	134,9	135,0	135,0	135,0	135,0	135,0	135,0	135,0	0,2	2,00
fm x 1,091	135,3	134,6	134,9	134,9	134,9	134,9	135,0	135,0	135,0	135,0	135,0	135,0	135,1	0,2	2,00
fm x 1,189	135,3	134,4	134,9	134,9	134,9	135,0	135,0	135,0	135,0	135,0	135,0	134,9	135,1	0,2	2,00
fm x 1,297	135,3	133,7	134,6	134,7	134,7	134,7	134,7	134,8	134,8	134,8	134,7	134,7	135,1	0,2	2,00
fm x 1,356	135,3	130,0	133,8	134,0	134,0	134,0	134,0	134,0	134,0	134,0	134,0	133,9	134,9	0,2	2,00
fm x 1,414	133,0	130,0	132,3	132,2	132,2	132,2	132,2	132,2	132,3	132,2	132,2	132,2	130,9	0,2	2,00
fm x 2,000	117,5		107,7	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,3	2,00
fm x 4,000	93,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,4	2,00
fm x 8,000	74,0	_	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,7	2,00
fm x 16,000	65,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	2,00

U = incerteza de medição.

As frequências de teste são calculadas a partir da frequência central e de multiplicadores (como consta na primeira coluna). Por exemplo: O filtro de frequência nominal 500 Hz, cuja frequência exata, para base 10, é de 501,187 Hz, o segundo ponto acima da frequência central, pode ser calculado como: fm x 1,188 = 595,410 Hz.

L_Sup = limite superior de tolerância definido pela norma para uma determinada frequência de teste.

L_Inf = limite inferior de tolerância definido pela norma para uma determinada frequência de teste. A norma não define um limite inferior para aquelas frequências preenchidas com uma linha tracejada ("---"). Na prática, a atenuação nestas frequências pode ser menos infinito.

As frequências centrais identificadas na primeira linha da tabela correspondem às frequências nominais.

As frequências centrais exatas de cada filtro (fm) são calculadas conforme a ISO 266.

Eventuais resultados = 0,0 dB correspondem a indicações de, pelo menos, 10 dB abaixo do limite L_Sup correspondente

As tolerâncias identificadas na(s) tabela(s) não contemplam as incertezas de medição. Estas podem e devem ser consideradas como parte do resultado para estabelecer um critério de aceitação.

Página

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

Filtros de terços de oitava de classe 1 / Base 2 (tabela 1/3)

Lref em 1000 Hz = 135,0 dB

Frequência	L_Sup	L_Inf	16	20	25	31	40	50	63	80	100	125	160	+/-U	k
fm x 0,184	65,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	2,00
fm x 0,326	74,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,7	2,00
fm x 0,530	93,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,4	2,00
fm x 0,772	117,5		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,3	2,00
fm x 0,891	133,0	130,0	131,6	132,0	131,6	131,5	131,6	131,6	131,5	131,6	131,6	131,5	131,6	0,2	2,00
fm x 0,905	135,3	130,0	133,6	133,7	133,6	133,6	133,6	133,6	133,5	133,6	133,6	133,6	133,6	0,2	2,00
fm x 0,919	135,3	133,7	134,5	134,6	134,5	134,5	134,5	134,6	134,5	134,5	134,6	134,5	134,6	0,2	2,00
fm x 0,947	135,3	134,4	134,9	134,9	134,9	134,9	134,9	134,9	134,9	134,9	134,9	134,9	134,9	0,2	2,00
fm x 0,974	135,3	134,6	134,9	134,9	134,9	134,9	134,9	134,9	134,9	134,9	134,9	134,9	135,0	0,2	2,00
fm	135,3	134,7	134,9	135,0	134,9	134,9	134,9	134,9	134,9	134,9	134,9	134,9	135,0	0,2	2,00
fm x 1,027	135,3	134,6	134,9	134,9	135,0	134,9	134,9	134,9	134,9	134,9	134,9	134,9	135,0	0,2	2,00
fm x 1,056	135,3	134,4	134,8	134,9	134,9	134,9	134,9	134,9	134,9	134,9	134,9	134,9	134,9	0,2	2,00
fm x 1,088	135,3	133,7	134,5	134,6	134,5	134,5	134,5	134,5	134,5	134,6	134,6	134,5	134,6	0,2	2,00
fm x 1,105	135,3	130,0	133,6	133,7	133,4	133,4	133,4	133,6	133,4	133,4	133,6	133,4	133,4	0,2	2,00
fm x 1,122	133,0	130,0	131,6	131,8	131,4	131,1	131,0	131,4	131,1	131,0	131,4	131,1	131,0	0,2	2,00
fm x 1,296	117,5		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,3	2,00
fm x 1,887	93,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,4	2,00
fm x 3,070	74,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,7	2,00
fm x 5,435	65,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	2,00

U = incerteza de medição.

As frequências de teste são calculadas a partir da frequência central e de multiplicadores (como consta na primeira coluna). Por exemplo: O filtro de frequência nominal 125 Hz, cuja frequência exata, para base 10, é de 125,893 Hz, o segundo ponto acima da frequência central, pode ser calculado como: fm x 1,056 = 132,943 Hz.

L_Sup = limite superior de tolerância definido pela norma para uma determinada frequência de teste.

Linf = limite inferior de tolerância definido pela norma para uma determinada frequência de teste. A norma não define um limite inferior para aquelas frequências preenchidas com uma limha tracejada ("---"). Na prática, a atenuação nestas frequências pode ser menos infinito.

As frequências centrais identificadas na primeira linha da tabela correspondem às frequências nominais.

As frequências centrais exatas de cada filtro (fm) são calculadas conforme a ISO 266.

Eventuais resultados = 0,0 dB correspondem a indicações de, pelo menos, 10 dB abaixo do limite L_Sup correspondente.

As tolerâncias identificadas na(s) tabela(s) não contemplam as incertezas de medição. Estas podem e devem ser consideradas como parte do resultado para estabelecer um critério de aceitação.

Página

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

Filtros de terços de oitava de classe 1 / Base 2 (tabela 2/3)

Lref em 1000 Hz = 135,0 dB

															,
Frequência	L_Sup	L_Inf	200	250	315	400	500	630	800	1000	1250	1600	2000	+/-U	k
fm x 0,184	65,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	2,00
fm x 0,326	74,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,7	2,00
fm x 0,530	93,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,4	2,00
fm x 0,772	117,5		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,3	2,00
fm x 0,891	133,0	130,0	131,6	131,5	131,7	131,6	131,5	131,7	131,7	131,5	131,7	131,6	131,5	0,2	2,00
fm x 0,905	135,3	130,0	133,6	133,6	133,6	133,7	133,5	133,7	133,6	133,6	133,6	133,6	133,6	0,2	2,00
fm x 0,919	135,3	133,7	134,6	134,6	134,6	134,6	134,5	134,6	134,6	134,6	134,6	134,6	134,6	0,2	2,00
fm x 0,947	135,3	134,4	134,9	134,9	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	0,2	2,00
fm x 0,974	135,3	134,6	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	0,2	2,00
fm	135,3	134,7	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	0,2	2,00
fm x 1,027	135,3	134,6	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	0,2	2,00
fm x 1,056	135,3	134,4	134,9	134,9	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	0,2	2,00
fm x 1,088	135,3	133,7	134,6	134,6	134,6	134,6	134,5	134,6	134,6	134,6	134,6	134,6	134,6	0,2	2,00
fm x 1,105	135,3	130,0	133,6	133,5	133,5	133,6	133,4	133,5	133,4	133,4	133,4	133,6	133,4	0,2	2,00
fm x 1,122	133,0	130,0	131,4	131,1	131,1	131,4	131,1	131,1	131,0	131,1	131,0	131,4	131,1	0,2	2,00
fm x 1,296	117,5		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,3	2,00
fm x 1,887	93,0	1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,4	2,00
fm x 3,070	74,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,7	2,00
fm x 5,435	65,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	2,00

Filtros de terços de oitava de classe 1 / Base 2 (tabela 3/3)

Lref em 1000 Hz = 135,0 d8	3

Frequência	L_Sup	L_Inf	2500	3150	4000	5000	6300	8000	10000	12500	16000	20000	 +/-U	k	
fm x 0,184	65,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	 1,0	2,00	
fm x 0,326	74,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	66,6	 0,7	2,00	
fm x 0,530	93,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	88,2	 0,4	2,00	
fm x 0,772	117,5		0,0	0,0	0,0	0,0	0,0	0,0	0,0	108,1	110,3	114,5	 0,3	2,00	
fm x 0,891	133,0	130,0	131,7	131,6	131,6	131,6	131,6	131,5	131,6	131,6	131,4	131,9	 0,2	2,00	
fm x 0,905	135,3	130,0	133,6	133,6	133,6	133,6	133,6	133,5	133,6	133,5	133,3	133,3	 0,2	2,00	
fm x 0,919	135,3	133,7	134,6	134,6	134,6	134,6	134,6	134,5	134,5	134,4	134,3	134,3	 0,2	2,00	
fm x 0,947	135,3	134,4	135,0	135,0	135,0	135,0	135,0	134,9	134,9	134,9	134,9	135,0	 0,2	2,00	
fm x 0,974	135,3	134,6	135,0	135,0	135,0	135,0	135,0	135,0	134,9	134,9	135,0	135,1	 0,2	2,00	
fm	135,3	134,7	135,0	135,0	135,0	135,0	135,0	134,9	134,9	134,9	135,0	135,1	 0,2	2,00	
fm x 1,027	135,3	134,6	135,0	135,0	135,0	135,0	135,0	134,9	134,9	134,9	135,0	135,1	 0,2	2,00	
fm x 1,056	135,3	134,4	135,0	135,0	135,0	135,0	135,0	134,9	134,9	134,9	135,0	135,1	 0,2	2,00	
fm x 1,088	135,3	133,7	134,6	134,6	134,5	134,5	134,5	134,5	134,5	134,5	134,9	135,0	 0,2	2,00	
fm x 1,105	135,3	130,0	133,4	133,5	133,4	133,4	133,5	133,4	133,3	133,3	134,2	134,6	 0,2	2,00	
fm x 1,122	133,0	130,0	131,0	131,4	131,1	131,0	131,4	131,1	130,9	130,7	132,2	132,1	 0,2	2,00	
fm x 1,296	117,5		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	 0,3	2,00	
fm x 1,887	93,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	 0,4	2,00	
fm x 3,070	74,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	 0,7	2,00	
fm x 5,435	65,0		0,0	0,0	0,0	0,0	58,5	57,7	0,0	0,0	0,0	59,1	 1,0	2,00	

Página

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

CRITÉRIOS DA NORMA IEC 61672-1:2013 PARA ESTABELECER A CONFORMIDADE DO SONÔMETRO:

A norma IEC 61672-1:2013 estabelece, para cada um dos testes, critérios de tolerância e incertezas máximas que podem ser praticadas. Com relação às incertezas, o laboratório identifica antecipadamente se o critério de incertezas máximas é atendido e, portanto, não há necessidade, a priori, do cliente fazer esta comprovação. Para identificar se o sonômetro atende determinada tolerância a norma estabelece que os erros não devem exceder os limites de tolerância definidos para o teste. Por exemplo, se uma determinada tolerância for de 1 dB, os valores absolutos do erro não deverão exceder a 1 dB.

Observações adicionais sobre conformidade, exclusivas desta calibração:

A norma IEC 61672-3: 2013 é uma norma que foi criada no âmbito da metrologia legal em sua origem, e, por isso, estabelece frases obrigatórias de conformidade geral do equipamento na conclusão dos testes periódicos. Essas frases têm como objetivo determinar a conformidade do sonômetro à IEC 61672-1:2013, sendo que, para isso, segundo esta própria norma, além de ser aprovado nos testes periódicos da IEC 61672-3:2013, o sonômetro deve também ter tido o seu modelo aprovado pela IEC 61672-2:2013 por meio de uma organização independente, isto é, instituições que gozam de reconhecimento internacional para tal fim. A tradução brasileira da parte 3 desta norma, a ABNT NBR IEC 61672-3:2018, por ser estritamente literal, também inclui tais frases.

No contexto brasileiro os testes periódicos da ABNT NBR IEC 61672-3:2018, como aqueles constantes neste certificado, são realizados, em geral, por laboratórios da Rede Brasileira de Calibração (RBC), no âmbito da metrologia científica. Se um ou mais testes apresentarem erros acima das tolerâncias especificadas na IEC 61672-1:2013, já constitui-se evidência suficiente da não conformidade do sonômetro à esta norma como um todo. Entretanto, se todos os testes apresentarem erros abaixo das tolerâncias especificadas na IEC 61672-1:2013, a conformidade do sonômetro não pode ser formalmente assegurada pelo laboratório RBC, uma vez que este não possui prerrogativas legais para reconhecer uma suposta evidência de aprovação de modelo pela IEC 61672-2:2013, e portanto, não pode fazer afirmações categóricas a este respeito. Assim sendo, as frases obrigatórias da ABNT NBR IEC 61672-3:2018, referentes ao caso em que o sonômetro tenha sido aprovado em todos os seus testes periódicos, ficam sujeitas à evidência pública - seja do cliente, do fabricante ou de organização independente - quanto à aprovação de modelo segundo a IEC 61672-2:2013, ou ainda, à ausência desta.

Portanto, caso haja evidência pública de aprovação de modelo pela IEC 61672-2:2013, aplica-se a seguinte conclusão normativa ao sopômetro submetido ao teste periódico:

sonômetro submetido ao teste periódico:
"O sonômetro submetido ao teste completou com sucesso os testes periódicos da ABNT NBR IEC 61672-3:2018, para as condições ambientais em que os ensaios foram realizados. Como evidência estava publicamente disponível, a partir de uma organização de testes independente, responsável por aprovar os resultados dos testes de aprovação de modelo realizados de acordo com a IEC 61672-2:2013, para demonstrar que o modelo de sonômetro está completamente conforme os requisitos da classe X da IEC 61672-1:2013, o sonômetro submetido aos ensaios está em conformidade com os requisitos para classe X da IEC 61672-1:2013."

Caso não haja evidência pública de aprovação de modelo pela IEC 61672-2:2013, aplica-se a seguinte conclusão normativa ao sonômetro submetido ao teste periódico:

"O sonômetro submetido ao teste completou com sucesso os testes periódicos da ABNT NBR IEC 61672-3:2018, para as condições ambientais em que os ensaios foram realizados. Entretanto, nenhuma declaração geral ou conclusão pode ser feita a respeito da conformidade do sonômetro a todas as especificações da IEC 61672-1:2013, porque (a) nenhuma evidência estava publicamente disponível, a partir de uma organização independente de testes responsável pela aprovação de modelo, para demonstrar que o modelo do sonômetro está completamente em conformidade com as especificações para a classe X da IEC 61672-1:2013 ou que os dados de correção para o teste acústico de ponderação em frequência não foram fornecidos no manual de instrução e (b) porque os testes periódicos da ABNT NBR IEC 61672-3:2018 cobrem apenas um conjunto limitado de especificações da IEC 61672-1:2013."

Ohoonion	ann a diai	annia ave	ducivos	docto	calibração:	1 1
Observat	oes aultic	Jiiais ext	Jusivas	uesia	calibracao.	()

(fim do resultados)

Desde 1996

RBC - Rede Brasileira de Calibração

Certificado de Calibração

Certificado Nº: 138.684

ate of Calibration

Página 1 de 12

Laboratório de Acústica

Dados do Cliente:

Nome: Sérgio Luiz Garavelli Endereço: Rua 4, Lote 10

Cidade: Águas Claras Estado: DF CEP: 71937-000

Dados do Instrumento Calibrado:

Medidor de Nível Sonoro Nome: Classe: Nº de Identificação: 01 dB Não consta Marca: Modelo: N° de Processo: 50585 Fusion N° de Série: 11532 Data da Calibração: 23/09/22 Data da Emissão: 23/09/22 Nº de Patrimônio: Não consta

Informações:

Parte acústica calibrada em conjunto com o Microfone e Pré-Amplificador:

Marca: G.R.A.S Modelo: 40CE / Não consta

Modelo: 40CE / Não consta N° de Série: 259694 / Não consta

Procedimento Utilizado:

O procedimento operacional de calibração PO.MNS.61672-rev.01

Norma de Referência:

61672-3: 2013 e IEC 61260: 1995

Padrões Utilizados:

Nome	Nº Serie	N° Certificado	Rastreabilidade	Data da Validad
Calibrador	2295562	126228	RBC	05/07/23
Gerador de sinais	149091	RBC-20/0738	RBC	26/10/22
Barômetro	097.0912.0802.016	135.276	RBC	07/02/23
Termo-Higrômetro	097.0912.0802.016	132.030	RBC	07/02/23

LABORATÓRIO DE CALIBRAÇÃO ACREDITADO PELA CGCRE DE ACORDO COM A ABNT NBR ISO/IEC 17025 SOB O NÚMERO 256

A Gogres e signateria do Acordo de Reconhecimento Mutuo da III.A.C.—Cooperação internacional de Acreditação de Laboratórios.
A Gogres e signateria do Acordo de Reconhecimento Mutuo da II.A.C.—Cooperação internacional de Acreditação.
O glusas ou regaro quando realizado não las parte de econo da acreditação pela internacional de Acreditação.
O glusas ou regaro quando realizado não las parte de econo da acreditação pela composição de la constitución de la parte de econo de acreditação pela composição de la constitución de la constitución de la composição de la constitución de la

Chrompack Inst. Cientif. Ltda

Av. Eng * Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil

Fone: 55 11 3384-9320 - www.chrompack.com.br

Certificado de Calibração

Certificado Nº: 138.684

Página 2 de 12

1-Sumário dos resultados:

Ruído auto-gerado acústico	avaliado	Linearidade de Nível com Controle de Faixa	não se aplica
Ruído auto-gerado elétrico	avaliado	Resposta a Pulsos Tonais	de acordo
Ponderação em frequência acústico	de acordo	Pico C	de acordo
Ponderação em frequência elétrico	de acordo	Indicação de Sobrecarga	de acordo
Ponderações no Tempo e na frequência em 1kHz	de acordo	Estabilidade em nível Alto	de acordo
Linearidade de nível na faixa de referência	de acordo	Estabilidade de longa duração	de acordo

2-Acústico - Ajuste com Microfone Instalado:

Configuração do instrumento sob medição:

Frequência de referência: 1000 Hz

Nível de referência: 94,0 dB

Faixa de nível de referência: 21 dB a 138 dB

Nível Nominal (dB)	Nível Indicado (antes do ajuste) (dB)	Nível Indicado (depois do ajuste Inicial) (dB)	Nível Indicado (Final) (dB)	Diferença (dB)	k	Incerteza da Medição (dB)	Tolerância em dB
94,0	94,0	94,0	94,0	0,0	2,01	0,2	±0,3

3-Acústico - Ruído Auto-gerado com Microfone:

Configuração do instrumento sob medição:

Parâmetro: LAeq

Tempo de Medição: 30 s Faixa de nível de referência: 21 dB a 138 dB

Especificado [dB]	Nível Indicado (dB)	Incerteza da Medição (dB)	k
19.5	19.4	0.9	2.00

Av. Engº Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

Certificado de Calibração Certificate of Calibration

Certificado Nº: 138.684

Página 3 de 12

Elétrico - Ruído Auto-gerado sem Microfone:

Configuração do instrumento sob medição: Faixa de nível de referência: 21 dB a 138 dB Tempo de Medição: 30 s

Parâmetro: LAeq

Especificado [dB]	Nível Indicado (dB)	Incerteza da Medição (dB)	k
14.9	<17	0,2	2,02

Parâmetro: LCeq

Especificado [dB]	Nível Indicado (dB)	Incerteza da Medição (dB)	k
15,5	<17	0,2	2,02

Parâmetro: LZeq

Especificado [dB]	Nível Indicado (dB)	Incerteza da Medição (dB)	k
18.5	17.8	0.2	2,02

4-Acústico - Ponderação em Frequência:

Configuração do instrumento sob medição: Frequência de referência: 1000 Hz Nível de referência: 94,0 dB

Faixa de nível de referência: 21 dB a 138 dB Parâmetro: SPL (C) F

Frequência Nominal (Hz)	Nível Esperado Corrigido Campo Livre (dB)	Nível Indicado Corrigido Campo Livre (dB)	Desvio Indicado (dB)	Tolerância (dB)	k	Incerteza (dB)
125	93,8	93,9	0,1	±1,0	2,01	0,5
1000	94,0	94,0	0,0	±0,7	2,01	0,5
8000	91,0	91,5	0,5	1,5;-2,5	2,01	0,5
						STATE OF THE PARTY

Av. Engº Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

Certificado de Calibração

Certificate of Calibration

Certificado Nº: 138.684

Página 4 de 12

5-Elétrico - Ponderação em Frequência:

Configuração do instrumento sob medição: Frequência de referência: 1000 Hz Nível de referência: 93 dB

Faixa de nível de referência: 21 dB a 138 dB Parâmetro: (A) Fast

Frequência Nominal (Hz)	Nível Esperado (dB)	Nível Indicado (dB)	Desvio Indicado (dB)	Tolerância (dB)	k	Incerteza (dB)
63	93,0	92,9	-0,1	±1,0	2,02	0,2
125	93,0	93,0	0,0	±1,0	2,02	0,2
250	93,0	93,0	0,0	±1,0	2,02	0,2
500	93,0	93,0	0,0	±1,0	2,02	0,2
1000	93,0	93,0	0,0	±0,7	2,02	0,2
2000	93,0	93,0	0,0	±1,0	2,02	0,2
4000	93,0	93,1	0,1	±1,0	2,02	0,2
8000	93,0	92,6	-0,4	1,5;-2,5	2,02	0,2
16000	93,0	88,0	-5,0	2,5;-16,0	2,02	0,2

Parâmetro: (C) Fast

Frequência Nominal (Hz)	Nível Esperado (dB)	Nível Indicado (dB)	Desvio Indicado (dB)	Tolerância (dB)	k	Incerteza (dB)
63	93,0	92,9	-0,1	±1,0	2,02	0,2
125	93,0	93,0	0,0	±1,0	2,02	0,2
250	93,0	93,0	0,0	±1,0	2,02	0,2
500	93,0	93,0	0,0	±1,0	2,02	0,2
1000	93,0	93,0	0,0	±0,7	2,02	0,2
2000	93,0	93,0	0,0	±1,0	2,02	0,2
4000	93,0	93,0	0,0	±1,0	2,02	0,2
8000	93,0	92,6	-0,4	1,5;-2,5	2,02	0,2
16000	93,0	88,0	-5,0	2,5;-16,0	2,02	0,2
						The second secon

Av. Eng^o Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

Desde 1996

Certificado de Calibração Certificate of Calibration

Certificado Nº: 138.684

Página 5 de 12

Elétrico - Ponderação em Frequência (continuação):

Parâmetro: (Z) Fast

Frequência Nominal (Hz)	Nível Esperado (dB)	Nível Indicado (dB)	Desvio Indicado (dB)	Tolerância (dB)	k	Incerteza (dB)
63	93,0	92,9	-0,1	±1,0	2,02	0,2
125	93,0	93,0	0,0	±1,0	2,02	0,2
250	93,0	93,0	0,0	±1,0	2,02	0,2
500	93,0	93,0	0,0	±1,0	2,02	0,2
1000	93,0	93,0	0,0	±0,7	2,02	0,2
2000	93,0	93,0	0,0	±1,0	2,02	0,2
4000	93,0	93,2	0,2	±1,0	2,02	0,2
8000	93,0	93,2	0,2	1,5;-2,5	2,02	0,2
16000	93,0	92,8	-0,2	2,5;-16,0	2,02	0,2

6-Elétrico - Ponderações em Frequência em 1 kHz:

Configuração do instrumento sob medição: Frequência de referência: 1000 Hz Nível de referência: 94,0 dB

Faixa de nível de referência: 21 dB a 138 dB Parâmetro: SPL (A) F

Parâmetro Medido	Nível Esperado (dB)	Nível Indicado (dB)	Desvio Indicado (dB)	Tolerância (dB)	k	Incerteza (dB)
SPL (A) F	94,0	94,0	0,0	±0,2	2,02	0,2
SPL (C) F	94,0	94,0	0,0	±0,2	2,02	0,2
SPL (Z) F	94,0	94,0	0,0	±0,2	2,02	0,2

Elétrico - Ponderações no Tempo em 1 kHz:

Configuração do instrumento sob medição: Frequência de referência: 1000 Hz Nível de referência: 94,0 dB

Faixa de nível de referência: 21 dB a 138 dB Parâmetro: SPL (A) F

Nível Nível Desvio Tolerância Incerteza Parâmetro Esperado Indicado Indicado (dB) (dB) Medido (dB) (dB) (dB) 0,2 SPL (A) F 94.0 94,0 0,0 ±0,1 2.02 0,0 94,0 ±0.1 SPL (A) S 94,0 2,02 94,0 0,0 ±0.1 2,02 0,2 LAeq 94,0

Av. Eng° Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

Certificado de Calibração

Certificado Nº: 138.684

Página 6 de 12

7-Elétrico - Linearidade de Nível na Faixa de Referência:

Configuração do instrumento sob medição: Frequência de referência: 8000 Hz Nível de referência: 94,0 dB

Faixa de nível de referência: 21 dB a 138 dB

Parâmetro: (A) Fast (Crescente)

Faixa de Nível (dB)	Nível Esperado (dB)	Nível Indicado (dB)	Desvio Indicado (dB)	Tolerância (dB)	k	Incerteza (dB)
21 dB a 138 dB	99,0	99,0	0,0		2,00	0,2
21 dB a 138 dB	104,0	104,0	0,0		2,00	0,2
21 dB a 138 dB	109,0	109,0	0,0		2,00	0,2
21 dB a 138 dB	114,0	114,0	0,0		2,00	0,2
21 dB a 138 dB	119,0	119,0	0,0		2,00	0,2
21 dB a 138 dB	124,0	124,0	0,0		2,00	0,2
21 dB a 138 dB	129,0	129,0	0,0		2,00	0,2
21 dB a 138 dB	130,0	130,0	0,0	100	2,00	0,2
21 dB a 138 dB	131,0	131,0	0,0	±0,8	2,00	0,2
21 dB a 138 dB	132,0	132,0	0,0		2,00	0,2
21 dB a 138 dB	133,0	133,0	0,0		2,00	0,2
21 dB a 138 dB	134,0	134,0	0,0		2,00	0,2
21 dB a 138 dB	135,0	134,9	-0,1		2,00	0,2
21 dB a 138 dB	136,0	135,9	-0,1		2,00	0,2
21 dB a 138 dB	137,0	136,8	-0,2		2,00	0,2
21 dB a 138 dB	138,0	137,7	-0,3		2,00	0,2

Av. Eng° Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

Certificado de Calibração

Certificado Nº: 138.684

Página 7 de 12

Elétrico - Linearidade de Nível na Faixa de Referência (continuação):

Configuração do instrumento sob medição: Frequência de referência: 8000 Hz Nível de referência: 94,0 dB

Faixa de nível de referência: 21 dB a 138 dB Parâmetro: (A) Fast (Decrescente)

Faixa de Nível (dB)	Nível Esperado (dB)	Nível Indicado (dB)	Desvio Indicado (dB)	Tolerância (dB)	k	Incerteza (dB)
(ub)	(UB)	(ub)	(ub)			
21 dB a 138 dB	89,0	89,0	0,0		2,00	0,2
21 dB a 138 dB	84,0	84,0	0,0		2,00	0,2
21 dB a 138 dB	79,0	79,0	0,0		2,00	0,2
21 dB a 138 dB	74,0	74,0	0,0		2,00	0,2
21 dB a 138 dB	69,0	69,0	0,0		2,00	0,2
21 dB a 138 dB	64,0	64,0	0,0		2,00	0,2
21 dB a 138 dB	59,0	59,0	0,0		2,00	0,2
21 dB a 138 dB	54,0	54,0	0,0		2,00	0,2
21 dB a 138 dB	49,0	49,0	0,0		2,00	0,2
21 dB a 138 dB	44,0	44,0	0,0	±0,8	2,00	0,2
21 dB a 138 dB	39,0	39,0	0,0		2,00	0,2
21 dB a 138 dB	34,0	34,0	0,0		2,00	0,2
21 dB a 138 dB	29,0	29,0	0,0		2,00	0,2
21 dB a 138 dB	28,0	28,0	0,0		2,00	0,2
21 dB a 138 dB	27,0	27,0	0,0		2,00	0,2
21 dB a 138 dB	26,0	26,0	0,0		2,00	0,2
21 dB a 138 dB	25,0	25,0	0,0		2,00	0,2
21 dB a 138 dB	24,0	24,3	0,3		2,00	0,2
21 dB a 138 dB	23,0	23,3	0,3		2,00	0,2

Av. Eng° Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

Certificate of Calibration

Certificado Nº: 138.684

Página 8 de 12

8-Elétrico - Resposta a Pulsos Tonais:

Configuração do instrumento sob medição: Frequência de referência: 4000 Hz

Prequencia de referencia: 4000 Hz Nível de referência: 135,0 dB Faixa de nível de referência: 21 dB a 138 dB

Parâmetro: SPL (A) F

Duração do Pulso (ms)	Parâmetro Medido	Nível Esperado (dB)	Nível Indicado (dB)	Desvio Indicado (dB)	Tolerância (dB)	k	Incerteza (dB)
200	LAFmax @ 200ms	134,0	133,9	-0,1	±0,5	2,02	0,2
2	LAFmax @ 2ms	117,0	116,9	-0,1	1,0;-1,5	2,02	0,2
0,25	LAFmax @ 0,25ms	108,0	107,7	-0,3	1,0;-3,0	2,02	0,2
200	LASmax @ 200ms	127,6	127,5	-0,1	±0,5	2,02	0,2
2	LASmax @ 2ms	108,0	107,8	-0,2	1,0;-1,5	2,02	0,2
200	LAE @ 200 ms	128,0	127,9	-0,1	±0,5	2,02	0,2
2	LAE @ 2 ms	108,0	107,8	-0,2	1,0;-1,5	2,02	0,2
0,25	LAE @ 0,25 ms	99,0	98,7	-0,3	1,0;-3,0	2,02	0,2

9-Elétrico - Pico C:

Configuração do instrumento sob medição: Frequência de referência: 8000 Hz

Nível de referência: 130,0 dB Parâmetro: SPL (C) F

Faixa de nível de referência: 21 dB a 138 dB

Sinal de Teste	Parâmetro Medido	Nível Esperado (dB)	Nível Indicado (dB)	Desvio Indicado (dB)	Tolerância (dB)	k	Incerteza (dB)
8000 Hz 1 Ciclo	Pico C	133,4	133,3	-0,1	±2,0	2,02	0,2
500 Hz Semiciclo (+)	Pico C	132,4	132,2	-0,2	±1,0	2,02	0,2
500 Hz Semiciclo (-)	Pico C	132,4	132,2	-0,2	±1,0	2,02	0,2

Av. Eng° Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

Certificate of Calibration

Certificado Nº: 138.684

Página 9 de 12

10-Elétrico - Indicação de Sobrecarga:

Configuração do instrumento sob medição: Frequência de referência: 4000 Hz Nível de referência: 137,0 dB

Faixa de nível de referência: 21 dB a 138 dB

Parâmetro: LAeq

Pulso	Nível Indicado (dB)	Diferença (dB)	Tolerância (dB)	k	Incerteza (dB)
Positivo	147,4	0,1	±1,5	2,02	0,2
Negativo	147,3	0,1	±1,5	2,02	0,2

11-Elétrico - Estabilidade em nível Alto:

Configuração do instrumento sob medição: Frequência de referência: 1000 Hz Nível de referência: 137,0 dB

Faixa de nível de referência: 21 dB a 138 dB

Parâmetro: LAeq

Faixa de Nível (dB)	Nível Esperado (dB)	Nível Indicado (dB)	Desvio Indicado (dB)	Tolerância (dB)	k	Incerteza (dB)
21 dB a 138 dB	137,0	137,0	0,0	±0,1	2,02	0,2

12-Elétrico - Estabilidade de longa duração:

Configuração do instrumento sob medição: Frequência de referência: 1000 Hz Nível de referência: 94,0 dB

Faixa de nível de referência: 21 dB a 138 dB

Parâmetro: LAeq

Faixa de Nível (dB)	Nível Esperado (dB)	Nível Indicado (dB)	Desvio Indicado (dB)	Tolerância (dB)	k	Incerteza (dB)
21 dB a 138 dB	94,0	94,0	0,0	±0,1	2,02	0,2

Av. Eng* Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

Certificate of Calibration

Certificado Nº: 138.684

Página 10 de 12

Calibração segundo a IEC 61260 para banda de terço

Configuração do instrumento sob medição: Frequência de referência: 1000 Hz

Faixa de nível de referência: 21 dB a 138 dB

Nível de referência: 94,0 dB Parâmetro: dB (Z) Slow

Freq.Nom.	Freq.Exata	F1	F2	F3	F4	F5	F6	F7	F8	F9
25	25,119	œ	00	00	27,8	2,7	2,7	1,0	0,3	0,3
31,5	31,623	00	00	00	27,7	2,5	2,5	0,7	0,6	0,3
40	39,811	oo	00	00	26,7	2,4	2,3	0,5	0,3	0,3
50	50,119	00	00	00	27,3	2,2	2,2	0,4	0,2	0,2
63	63,096	00	00	00	27,3	2,3	2,3	0,4	0,2	0,1
80	79,433	on	on	00	26,6	2,2	2,2	0,3	0,1	0,1
100	100	00	00	00	27,4	2,3	2,2	0,3	0,1	0,1
125	125,89	00	00	00	27,4	2,4	2,4	0,2	0,0	0,0
160	158,49	00	00	00	26,8	2,4	2,3	0,2	0,0	0,0
200	199,53	00	00	00	27,7	2,5	2,5	0,2	0,0	0,0
250	251,19	on	on	00	27,7	2,7	2,7	0,3	0,0	0,0
315	316,23	00	00	00	27,0	2,7	2,7	0,3	0,1	0,0
400	398,11	00	on	00	28,0	2,8	2,8	0,2	0,0	0,0
500	501,19	00	00	00	28,0	3,0	3,0	0,3	0,0	0,0
630	630,96	00	00	00	27,3	3,0	2,9	0,3	0,0	-0,1
800	794,33	00	00	00	28,2	3,1	3,1	0,3	0,0	-0,1
1000	1000,0	00	00	- 00	28,2	3,3	3,3	0,3	-0,1	0,0
1250	1258,9	00	-00	00	27,6	3,3	3,3	0,4	0,0	0,0
1600	1584,9	00	oo	00	28,6	3,5	3,5	0,4	0,0	0,0
2000	1995,3	00	00	00	28,6	3,8	3,8	0,5	0,0	0,0
2500	2511,9	00	on	00	28,0	3,7	3,7	0,5	0,0	0,0
3150	3162,3	00	00	00	28,9	3,9	3,9	0,5	0,1	0,0
4000	3981,1	oc	-00	00	29,0	4,1	4,1	0,5	-0,1	-0,2
5000	5011,9	00	00	00	28,1	3,8	3,8	1,0	-0,3	-0,3
6300	6309,6	00	00	00	28,9	4,0	4,0	0,3	-0,2	-0,2
8000	7943,3	00	00	oo	29,0	4,6	4,6	0,7	0,0	0,0
10000	10000	00	00	00	28,6	4,6	4,6	0,8	0,1	0,1
12500	12589	oc	30	oc	27,8	4,7	4,7	0,9	0,1	0,0
16000	15849	œ	00	00	25,6	4,8	4,8	1,1	0,1	0,0
20000	19953	oc	00	00	21,4	4,2	4,2	1,2	0,1	-0,2
TL Tipo		Δ>70	1>61	∆>42	Δ>17.5	5>4>2	5>4>-0.3	1.3>4>0.3	0.6>4>-0.3	0.4>4>-0

Av. Eng^e Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

Certificado de Calibração Certificate of Calibration

Certificado Nº: 138.684

Página 11 de 12

Calibração segundo a IEC 61260 para banda de terço (continuação)

Freq.Nom.	Freq.Exata	F10	F11	F12	F13	F14	F15	F16	F17	F18	F19
25	25,119	0,3	0,3	0,2	1,2	4,7	4,6	32,4	- 00	-00	00
31,5	31,623	0,3	0,3	0,5	1,2	4,7	4,6	33,3	oo	o	00
40	39,811	0,3	0,3	0,3	1,3	4,4	4,5	34,5	00	00	00
50	50,119	0,3	0,2	0,2	1,2	4,7	4,7	31,8	oo	oc	00
63	63,096	0,2	0,2	0,2	1,1	4,7	4,8	32,8	on	00	00
80	79,433	0,1	0,1	0,1	0,9	4,7	4,7	34,0	o	x	00
100	100	0,1	0,1	0,1	0,8	5,0	4,9	31,3	00	00	on
125	125,89	0,0	0,0	0,1	0,8	5,0	4,8	32,3	00	00	00
160	158,49	0,0	0,0	0,0	0,7	4,2	4,2	33,5	00	00	00
200	199,53	0,0	0,0	0,0	0,6	4,5	4,5	31,0	on	o	on
250	251,19	0,0	0,0	0,0	0,6	4,7	4,7	31,9	on	00	on
315	316,23	0,0	0,0	0,0	0,5	4,6	4,6	33,2	on	œ	00
400	398,11	0,0	0,0	0,0	0,5	4,0	4,0	30,6	on.	00	00
500	501,19	0,0	0,0	0,0	0,5	4,1	4,1	31,6	00	00	00
630	630,96	0,0	-0,1	0,0	0,4	4,1	4,1	32,8	00	00	00
800	794,33	-0,1	0,0	-0,1	0,3	3,6	3,6	30,2	00	00	00
1000	1000,0	-0,1	-0,1	0,0	0,4	3,7	3,7	31,2	00	œ	oo
1250	1258,9	0,0	0,0	0,0	0,4	3,7	3,7	32,5	00	00	00
1600	1584,9	0,0	0,0	0,0	0,3	3,3	3,3	30,0	o	00	00
2000	1995,3	0,0	0,0	0,0	0,3	3,3	3,3	30,9	00	00	00
2500	2511,9	0,0	0,0	0,0	0,3	3,3	3,3	32,0	o	00	00
3150	3162,3	-0,1	-0,1	-0,1	0,1	2,7	2,8	29,4	S	00	00
4000	3981,1	-0,2	-0,3	-0,3	0,0	2,6	2,6	30,1	00	00	00
5000	5011,9	-0,3	-0,3	-0,3	-0,1	2,5	2,5	31,5	o	00	00
6300	6309,6	-0,2	-0,2	-0,2	0,1	2,5	2,5	29,4	00	00	00
8000	7943,3	0,0	0,1	0,1	0,2	2,7	2,7	30,3	00	00	00
10000	10000	0,1	0,1	0,1	0,2	2,5	2,5	31,3	00	00	00
12500	12589	0,0	0,0	0,0	0,2	2,6	2,6	33,7	00	00	00
16000	15849	0,0	0,0	-0,1	-0,1	2,4	2,4	38,2	o	x	00
20000	19953	-0,2	-0,2	-0,2	-0,1	2,4	2,4	86,4	on	00	00
TL Tipo		0.3>4>-0.3	0.4 > 1 > 0.3	0.6>4>-0.3			5>4>2	D>17.5	4>42	A>61	127

Av. Eng° Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br LABORATÓRIO DE CALIBRAÇÃO ACREDITADO PELA CGCRE DE ACORDO COM A ABNT NBR ISO/IEC 17025 SOB O NÚMERO 256

Certificate of Calibratio

Certificado Nº: 138.684

Página 12 de 12

Método de Medição:

Os resultados foram obtidos através da aplicação de sinais elétricos, substituindo o microfone por adaptador com capacitância equivalente, os sinais são especificados pela norma IEC 61672 de modo a satisfazer os testes descritos como: Acústico com Microfone Instalado: Ajuste com Microfone; Ruído Auto-gerado e Ponderação em Frequência. Elétrico: Ruído Auto-gerado sem o Microfone; Ponderação em Frequência; Ponderações em Frequência e no Tempo em 1 kHz; Linearidade de Nível na faixa de referência; Resposta a Pulsos Tonais; Pico C e Indicação de Sobrecarga; Estabilidade em nível Alto e Estabilidade de longa duração.

Referente a norma IEC 61260

fm: Frequência central (indicador do instrumento)
F1 à F19: Resultado expresso em dB obtido através da aplicação das 19 (dezenove) frequências especificadas pela IEC 61260
em relação às fm. Corresponde ao Valor do desvio apresentado em relação a 94,0 dB.
TL: Tolerância especificada pela IEC 61260 expressa em dB

Observações:

- ☑ Condições ambientais:
 Temperatura: Inicial 23,1°C e Final 24,1°C
 Umidade relativa media: Inicial 54,1% e Final 55,3%
 Pressão atmosférica: Inicial 922,4mbar e Final 923,4 mbar
- Desvio: diferença entre o nível indicado e nível esperado.
- ☑ Anotação de Responsabilidade Técnica ART 28027230220241416 / CREA-SP.

Responsável pela calibração e Signatário autorizado

José Nilton

Av. Eng* Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

CALILAB - Laboratório de Calibração e Ensaios ISO 17025: Laboratório Acreditado (Accredited Laboratory)

TOTAL SAFETY LTDA.

R Gal Humberto AC Branco, 286 (310) São Caetano do Sul - CEP 09560-380 Tel: (11) 4220-2600 info@totalsafety.com.br www.totalsafety.com.br

CERTIFICADO DE CALIBRAÇÃO

Calibration Certificate

Nº: RBC3-11893-554

Certificate Number

RBC - REDE BRASILEIRA DE CALIBRAÇÃO

Arazilian Calibration Network

CLIENTEAcoem Brasil Comércio de Equipamentos Ltda.Processo / O.S.:CustomerAlameda dos Maracatins, 780 - Cj. 1903 - Moema22435

São Paulo - SP - CEP 04089-001

Interessado Sonora Ambiental Projetos Ambientais e Educacionais Ltda.

(informações adicionais na página 2)

ntercested party R. das Figueiras, Lote 07 - Loja 66 à 69- 042 Norte (Águas Claras) - Brasília - DF - CEP 71906-750

Item calibrado Analisador de oitavas (classe 1)

Calibrated item

Marca 01dB

Modelo Fusi

Modelo Fusion

Número de série 13292

Identificação

Identification

acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

Este certificado atende aos requisitos de acreditação pela Cgcre que avaliou a competência do laboratório e comprovou a sua rastreabilidade a padrões nacionais de medida (ou ao Sistema Internacional de Unidades – SI).

Calilab é um Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de

Este certificado é válido apenas para o item descrito, não sendo extensivo a quaisquer outros, ainda que similares. Este certificado somente pode ser reproduzido em sua forma integral e desde que seja legivel. Reproduções parciais ou para fins de divulgação em material publicitário, requerem autorização expressa do laboratório. Nenhuma reprodução poderá ser usada de maneira enganosa.

A versão original deste certificado é um arquivo PDF.

Data da calibração

Date of calibration (day/month/year)

25/07/2022

Total de páginas

Total pages numbe.

10

Data da Emissão:

Date of issue 25/07/2022

Enrique Bondarenco Signatário Autorizado Página Page

A Cgcre é signatária do Acordo de Reconhecimento Mútuo da ILAC (International Laboratory Accreditation Cooperation). A Cgcre é signatária do Acordo de Reconhecimento Mútuo da IAAC (Interamerican Accreditation Cooperation).

Cgcre is Signatory of the ILAC (International Laboratory Accreditation Cooperation) Mutual Recognition Arrangement. Cgcre is signatory of the IAAC (Interamerican Accreditation Cooperation) Mutual Recognition Arrangement.

Página

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

age 2

Local da calibração

Calibration location

Sede do laboratório Calilab (conforme indicado na página 1).

Condições ambientais

Environmental conditions

Temperatura 22,9 °C Umidade relativa 48 % Pressão atmosférica 932 hPa

Procedimento

Procedur

IT-572: Método de calibração de acordo com a ABNT NBR IEC 61672-3:2018 - Eletroacústica - Sonômetros: Testes Periódicos (ad oção idêntica à IEC 61672-3:2013 - Electroacoustics - Sound level meters - Periodic Test) . Por este procedimento são realizados testes elétricos bem como testes acústicos. Adicionalmente, são verificados os filtros com o procedimento IT-582, cujo método incorpora testes baseados na IEC 61260 (edição aplicável). A revisão dos procedimentos utilizados são aqueles em vigência na data desta calibração. O conjunto de parâmetros calibrados atende a recomendação do documento DOQ-CGCRE-052.

Plano de calibração

Calibration plan

Os critérios de seleção do método atendem aos requisitos da ISO 17025. O plano de calibração é elaborado e pactuado observando: o uso de métodos apropriados, as características do item sob teste e as necessidades do cliente. Para que o serviço de calibração complete sua finalidade, o laboratório recomenda que este certificado de calibração seja submetido a análise crítica, observando os erros de medição reportados e as incertezas associadas a cada teste, avaliando o impacto que cada parâmetro tem sobre as medições. Sempre que pertinente, são incluídas informações adicionais sobre contrato, solicitações do cliente, plano de calibração e configurações do item. Ajustes e reparos não fazem parte do escopo de acreditação.

Imparcialidade e confidencialidade

Impartiality and confidentiality

De acordo com a ISO 17025:2017 o laboratório não pode permitir que pressões comerciais, financeiras ou outras comprometam a imparcialidade. A norma identifica situações de risco à imparcialidade quando os relacionamentos são baseados em propriedade, governança, gestão, pessoal, recursos compartilhados, finanças, contratos, marketing (incluindo promoção de marcas) e pagamento de comissões de vendas ou outros benefícios pela indicação de novos clientes. Para assegurar a independência do CALILAB e promover um ambiente neutro, de equidade e sem conflitos de interesses, a Total Safety optou por manter-se livre de quaisquer associações que a identifiquem como uma parte interessada. O CALILAB é, portanto, um LABORATÓRIO DE TERCEIRA PARTE e não se benefícia em detrimento de resultados de calibrações ou ensaios que sejam favoráveis ou desfavoráveis ao prestígio de uma determinada marca ou modelo. O CALILAB também assegura a seus clientes o atendimento de todos os requisitos de confidencialidade previstos na ISO 17025:2017.

Incerteza de Medição

Measurement uncertainty

Os resultados reportados referem-se à média dos valores encontrados. Cada Incerteza Expandida de Medição (U) relatada é declarada como a incerteza padrão de medição multiplicada pelo fator de abrangência k = 2,00, para uma probabilidade de abrangência k e um valor diferente de 2,00 o valor de k é reportado juntamente com os resultados. A expressão da incerteza de medição é determinada de acordo o Guia para a Expressão da Incerteza de Medição (GUM). A capacidade de medição e calibração (CMC) do laboratório Calilab é informada no site do Inmetro. Em uma determinada calibração a incerteza reportada poderá ser maior do que a CMC.

Informações adicionais do item sob teste

Additional information

O sonômetro foi submetido aos testes com um microfone marca G.R.A.S., modelo 40CE, s/n 408858, pré-amplificador marca 01dB, modelo integrado, A calibração foi realizada na configuração de 0° e entrada integrada. Os resultados reportados no teste acústico incluem as correções de reflexão do corpo do sonômetro, difração do microfone e efeitos do protetor de vento obtidos no manual do fabricante. Software instalado: Versão HW: LIS006F; FW Aplicação: 2.72.

Rastreabilidade

Traceability

Gerador: Identificação P234, Certificado DIMCI 1214/2019 (Emitente INMETRO/Laeta)

Calibrador Multi-frequência: Identificação P280, Certificado RBC2-11795-354 (Emitente RBC/Calilab)

Página Page 3

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

RESULTADOS DA CALIBRAÇÃO

Result

Indicação inicial e indicação após o eventual ajuste (referência acústica)

carater informativo

	referência	indicação
indicação inicial	(dB)	(dB)
miciai	93,7	93,4

An expe		and the same of th	*
indicação	referência	indicação	l
após eventual	(dB)	(dB)	l
ajuste	93.7	93.7	1

ouraco milorini
frequência
(Hz)
1000.0

Linearidade na faixa de referência (em 8000 Hz, com ponderação A)

simulação elétrica

nível de

(dB) 94,0

(dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)	excitação	erro
137,0 -0,2 136,0 -0,1 135,0 -0,2 134,0 -0,2 129,0 -0,2 124,0 -0,1 119,0 -0,2 114,0 -0,1 109,0 -0,1 104,0 0,0 99,0 0,0 94,0 0,0 89,0 0,0 84,0 0,0 79,0 0,0 64,0 0,0 64,0 0,0 54,0 0,0 44,0 0,0 39,0 0,0 34,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4 24,0 0,3	(dB)	(dB)
136,0 -0,1 135,0 -0,2 134,0 -0,2 129,0 -0,2 124,0 -0,1 119,0 -0,2 114,0 -0,1 109,0 -0,1 104,0 0,0 99,0 0,0 94,0 0,0 84,0 0,0 79,0 0,0 64,0 0,0 64,0 0,0 59,0 0,0 54,0 0,0 44,0 0,0 39,0 0,0 34,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4 24,0 0,3	138,0	-0,2
135,0 -0,2 134,0 -0,2 129,0 -0,2 124,0 -0,1 119,0 -0,2 114,0 -0,1 109,0 -0,1 104,0 0,0 99,0 0,0 94,0 0,0 89,0 0,0 84,0 0,0 79,0 0,0 64,0 0,0 59,0 0,0 54,0 0,0 44,0 0,0 44,0 0,0 39,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4 24,0 0,3	137,0	-0,2
134.0 -0.2 129.0 -0.2 124.0 -0.1 119.0 -0.2 114.0 -0.1 109.0 -0.1 104.0 0.0 99.0 0.0 94.0 0.0 89.0 0.0 79.0 0.0 74.0 0.0 64.0 0.0 59.0 0.0 54.0 0.0 44.0 0.0 39.0 0.0 34.0 0.0 29.0 0.1 28.0 0.1 27.0 0.2 26.0 0.2 25.0 0.4 24.0 0.3	136,0	-0,1
129,0 -0,2 124,0 -0,1 119,0 -0,2 114,0 -0,1 119,0 -0,2 114,0 -0,1 109,0 -0,1 104,0 0,0 99,0 0,0 84,0 0,0 89,0 0,0 79,0 0,0 74,0 0,0 64,0 0,0 59,0 0,0 64,0 0,0 59,0 0,0 54,0 0,0 59,0 0,0 54,0 0,0 29,0 0,0 34,0 0,0 39,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4	135,0	-0,2
124,0 -0,1 119,0 -0,2 114,0 -0,1 119,0 -0,2 114,0 -0,1 109,0 -0,1 104,0 0,0 99,0 0,0 84,0 0,0 89,0 0,0 84,0 0,0 79,0 0,0 64,0 0,0 64,0 0,0 59,0 0,0 54,0 0,0 54,0 0,0 54,0 0,0 54,0 0,0 29,0 0,0 34,0 0,0 39,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4 24,0 0,3	134,0	-0,2
119,0 -0,2 114,0 -0,1 109,0 -0,1 104,0 0,0 99,0 0,0 84,0 0,0 89,0 0,0 84,0 0,0 79,0 0,0 64,0 0,0 69,0 0,0 59,0 0,0 54,0 0,0 59,0 0,0 54,0 0,0 59,0 0,0 29,0 0,0 29,0 0,0 29,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4	129,0	-0,2
114,0 -0,1 109,0 -0,1 104,0 0,0 99,0 0,0 84,0 0,0 89,0 0,0 84,0 0,0 79,0 0,0 64,0 0,0 64,0 0,0 59,0 0,0 54,0 0,0 54,0 0,0 29,0 0,0 44,0 0,0 39,0 0,0 34,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4 24,0 0,3	124,0	-0,1
109,0 -0,1 104,0 0,0 99,0 0,0 94,0 0,0 89,0 0,0 84,0 0,0 79,0 0,0 64,0 0,0 64,0 0,0 59,0 0,0 54,0 0,0 54,0 0,0 44,0 0,0 39,0 0,0 34,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4	119,0	-0,2
104,0 0,0 99,0 0,0 94,0 0,0 89,0 0,0 84,0 0,0 84,0 0,0 79,0 0,0 64,0 0,0 64,0 0,0 59,0 0,0 44,0 0,0 44,0 0,0 34,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4 24,0 0,3	114,0	-0,1
99,0 0,0 94,0 0,0 89,0 0,0 89,0 0,0 84,0 0,0 79,0 0,0 74,0 0,0 69,0 0,0 59,0 0,0 44,0 0,0 49,0 0,0 39,0 0,0 34,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4 24,0 0,3	109,0	-0,1
94,0 0,0 89,0 0,0 84,0 0,0 79,0 0,0 74,0 0,0 69,0 0,0 59,0 0,0 54,0 0,0 44,0 0,0 39,0 0,0 34,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4 24,0 0,0	104,0	0,0
89,0 0,0 84,0 0,0 79,0 0,0 74,0 0,0 69,0 0,0 59,0 0,0 44,0 0,0 49,0 0,0 39,0 0,0 34,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,4 24,0 0,3	99,0	0,0
84,0 0,0 79,0 0,0 74,0 0,0 69,0 0,0 64,0 0,0 59,0 0,0 54,0 0,0 49,0 0,0 39,0 0,0 34,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4 24,0 0,3	94,0	0,0
79,0 0,0 74,0 0,0 69,0 0,0 64,0 0,0 59,0 0,0 44,0 0,0 49,0 0,0 39,0 0,0 34,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4 24,0 0,3	89,0	0,0
74,0 0,0 69,0 0,0 64,0 0,0 59,0 0,0 44,0 0,0 44,0 0,0 39,0 0,0 34,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,4 24,0 0,3	84,0	0,0
69,0 0,0 64,0 0,0 59,0 0,0 54,0 0,0 49,0 0,0 39,0 0,0 34,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,4 24,0 0,3	79,0	0,0
64,0 0,0 59,0 0,0 49,0 0,0 44,0 0,0 39,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,4 24,0 0,3	74,0	0,0
59,0 0,0 54,0 0,0 49,0 0,0 44,0 0,0 39,0 0,0 34,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4 24,0 0,3	69,0	0,0
54,0 0,0 49,0 0,0 44,0 0,0 39,0 0,0 34,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4 24,0 0,3	64,0	0,0
49,0 0,0 44,0 0,0 39,0 0,0 34,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4 24,0 0,3	59,0	0,0
44,0 0,0 39,0 0,0 34,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4 24,0 0,3	54,0	0,0
39,0 0,0 34,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4 24,0 0,3	49,0	0,0
34,0 0,0 29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4 24,0 0,3	44,0	0,0
29,0 0,1 28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4 24,0 0,3	39,0	0,0
28,0 0,1 27,0 0,2 26,0 0,2 25,0 0,4 24,0 0,3	34,0	0,0
27,0 0,2 26,0 0,2 25,0 0,4 24,0 0,3	29,0	0,1
26,0 0,2 25,0 0,4 24,0 0,3	28,0	0, 1
25,0 0,4 24,0 0,3	27,0	0,2
24,0 0,3	26,0	0,2
	25,0	0,4
23,0 0,4	24,0	0,3
	23,0	0,4

22,0

21,0

0,6

0,7

tolerância +	tolerância -	limite superior
(dB)	(dB)	de linearidade
0,8	-0,8	(dB)
		138

limite inferior
de linearidade
(dB)
21

incerteza
de 42 a 138
(dB)
0,2

incerteza	
de 21 a 41	
(dB)	
0,2	

f	faixa de	
re	ferência	į
	(dB)	
	139,0	

Página Page 4

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

Linearidade incluindo controle de faixa - não se aplica

testes executados conforme aplicável

earidade incluindo controle de faixa				
excitação	erro			
(dB)	(dB)			
	100			
	NEC.			
-	-			
-	-			
	1.0			
-	·			
(=)	-			
-	120			
	excitação (dB) - - - - - -			

inal de faixa	excitação	erro
(dB)	(dB)	(dB)
-	-	1-1
151		100
-) -	-
-	=	-
	-	i.e.
121	lu l	121
-		
-	141	121

incerteza
(dB)

nível referência (dB)

tolerância (+/-) (dB)

Testes elétricos de curvas de ponderação em frequência A, C e Z (como aplicável)

normalizado em 1000 Hz

frequência	erro pond "A"	tolerância +	tolerância -
[Hz]	(dB)	(dB)	(dB)
63	-0,1	1,0	-1,0
125	-0,1	1,0	-1,0
250	0,0	1,0	-1,0
500	0,0	1,0	-1,0
1000	0,0	0,7	-0,7
2000	0,0	1,0	-1,0
4000	0,0	1,0	-1,0
8000	-0,4	1,5	-2,5
16000	-5,1	2,5	-16,0

nível referência
(dB)
94,0

incerteza ("A") (dB) 0,2

Prévio ajuste no nível e faixa de referência, na ponderação A

frequência	erro pond "C"	tolerância +	tolerância -
[Hz]	(dB)	(dB)	(dB)
63	0,0	1,0	-1,0
125	0,0	1,0	-1,0
250	0,0	1,0	-1,0
500	0,0	1,0	-1,0
1000	0,0	0,7	-0,7
2000	0,0	1,0	-1,0
4000	0,0	1,0	-1,0
8000	-0,4	1,5	-2,5
16000	-5,1	2,5	-16,0

	nível referência
	(dB)
ı	94,0

incerteza ("C") (dB) 0,2

Prévio ajuste no nível e faixa de referência, na ponderação A

frequência	erro pond "Z"	tolerância +	tolerância -
[Hz]	(dB)	(dB)	(dB)
63	0,0	1,0	-1,0
125	0,0	1,0	-1,0
250	0,0	1,0	-1,0
500	0,0	1,0	-1,0
1000	0,0	0,7	-0,7
2000	0,0	1,0	-1,0
4000	0,0	1,0	-1,0
8000	0,1	1,5	-2,5
16000	0,0	2,5	-16,0

na ponderação A
nível referência
(dB)
94,0

incerteza ("Z") (dB) 0,2

Página Page 5

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

Ponderações no tempo e na frequência em 1 kHz (A, C, Z) testes na faixa de referência (simulação elétrica)

excitação pond. (A, F)	erro pond. (C, F)	erro pond. (Z, F)	tolerância
(dB)	(dB)	(dB)	(dB)
94,0	0,0	0,0	0,2

incerteza (dB) 0,1

Ponderações no tempo e na frequência em 1 kHz (S, Leq)

testes na faixa de referência (simulação elétrica)

excitação	erro	erro	tolerância
pond. (A, F)	pond. (A, S)	pond. (A, Leq)	
(dB)	(dB)	(dB)	(dB)
94,0	0,0	0,0	0,1

incertez	a
(dB)	
0,1	

nível referência (dB)

Resposta a pulsos tonais (F; S; LAE)

testes executados conforme aplicável

sposta a pais	os condis (, 0, 171				
parâmetro	largura	nível	erro	tolerância +	tolerância -	incerteza
sob	do trem	esperado	(dB)	(dB)	(dB)	(dB)
teste	(ms)	(dB)				(dB)
Fast	200	134,0	0,1	0,5	-0,5	0,2
Fast	2	117,0	0,0	1,0	-1,5	0,2
Fast	0,25	108,0	-0,3	1,0	-3,0	0,2
Slow	200	127,6	0,0	0,5	-0,5	0,2
Slow	2	108,0	0,0	1,0	-3,0	0,2
LAE	200	128,0	0,1	0,5	-0,5	0,2
LAE	2	108,0	0,0	1,0	-1,5	0,2
LAE	0,25	99,0	-0,2	1,0	-3,0	0,2

Nível sonoro de pico ponderado em C

testes executados conforme aplicável

v	rei soliolo de pico poliderado elli C											
	sinal de	nível esperado	erro	tolerância +	tolerância -	incerteza						
	teste	(dB)	(dB)	(dB)	(dB)	(dB)						
	ciclo completo de 8 kHz	135,4	0,0	2,0	-2,0	0,2	1					
	semiciclo positivo 500 Hz	134,4	0,0	1,0	-1,0	0,2						
	semiciclo negativo 500 Hz	134,4	0,0	1,0	-1,0	0,2						

(dB) 132,0

Indicação de sobrecarga e teste de estabilidade

sobrecarga: aplicável a sonômetros que indicam LAeq,T

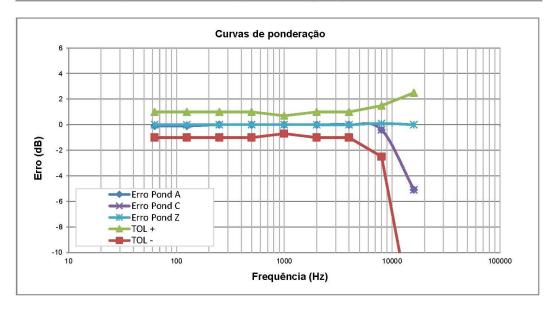
sinal de	indicação	erro absoluto
teste	(dB)	(dB)
semiciclo positivo	141,4	0,5
semiciclo negativo	141,9] 0,3
estabilidade de longa duração	94,0	0,0
estabilidade em nível alto	137,0	0,0

tolerância	incerteza
(dB)	(dB)
1,5	0,2
0,1	0,1
0,1	0,1

Ruído auto-gerado

configuração	ponderação em	especificado	medido	incerteza
de entrada	frequência	(dB)	(dB)	(dB)
microfone instalado	Α	18,5	17,3	0,8
dispositivo de entrada elétrica	А	14,9	11,3	
dispositivo de entrada elétrica	С	15,5	12,2	0,5
dispositivo de entrada elétrica	Z	18,5	15,5	1

O nível de ruído autogerado (com microfone instalado ou com dispositivo de entrada elétrica) é reportado somente para informação e não é utilizado para avaliar a conformidade a um requisito. A incerteza é interpretada neste contexto. A norma não estabelece um critério para a mesma.



Página

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

Ponderações em frequência - Teste elétrico (representação gráfica)

(dados normalizados em 1000 Hz)

Teste acústico (normalizado em 1000 Hz)

resultados reportados corrigidos para CAMPO LIVRE

frequência	nível de	erro	tolerância +	tolerância -	incerteza
[Hz]	referência (dB)	(dB)	(dB)	(dB)	(dB)
125	94,0	-0,2	1,0	-1,0	0,5
101		10	· ·	12	101
.=	-		-		-
1000	94,0	0,0	0,7	-0,7	0,4
=	-		-		
Tal.	-	-	120	-	141
8000	94,0	-1,0	1,5	-2,5	0,6

П	faixa	Т
	(dB)	
	139	
Г	k	

permaneceu configurado

2,00

O TESTE ACÚSTICO refere-se ao conjunto SONÔMETRO-MICROFONE para o campo sonoro reportado. O sonômetro permaneceu configurado com ponderação C. A menos que o cliente necessite um certificado de calibração exclusivo para microfone, o teste acústico é suficiente para caracterizar a resposta em frequência do conjunto, sonômetro-microfone, no contexto da norma IEC 61672. Os resultados reportados correspondem às condições de CAMPO LIVRE, isto é, níveis sonoros equivalentes à queles que seriam indicados em resposta às ondas sonoras progressivas planas incidentes a partir da direção de referência. O teste acústico foi executado com um calibrador multi-frequência e posterior aplicação de correções. Os resultados reportados no teste acústico não se aplicam a indicações obtidas com incidência aleatória ou em campo de pressão (as indicações nestes campos requerem aplicação de correções ou uma calibração específica no campo de interesse).

Página

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

Filtros de oitavas de classe 1 / Base 2

Lref em 1000 Hz = 135,0 dB

Frequência	L_Sup	L_Inf	16	31,5	63	125	250	500	1000	2000	4000	8000	16000	+/-U	k
fm x 0,063	65,0	1555	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	2,00
fm x 0,125	74,0	1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,7	2,00
fm x 0,250	93,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	87,8	0,4	2,00
fm x 0,500	117,5		109,4	110,4	110,5	110,5	110,5	110,5	110,6	110,6	110,6	110,6	115,9	0,3	2,00
fm x 0,707	133,0	130,0	131,9	131,8	131,9	131,9	131,9	131,9	131,9	131,9	131,9	131,9	131,9	0,2	2,00
fm x 0,739	135,3	130,0	133,7	133,5	133,6	133,6	133,6	133,6	133,7	133,7	133,7	133,6	133,2	0,2	2,00
fm x 0,771	135,3	133,7	134,5	134,4	134,4	134,4	134,4	134,5	134,5	134,5	134,5	134,5	134,0	0,2	2,00
fm x 0,841	135,3	134,4	134,9	134,9	134,9	134,9	134,9	134,9	134,9	134,9	134,9	134,9	134,8	0,2	2,00
fm x 0,917	135,3	134,6	134,9	134,8	134,9	134,9	134,9	135,0	135,0	135,0	135,0	134,9	134,9	0,2	2,00
fm	135,3	134,7	134,9	134,9	134,9	134,9	134,9	135,0	135,0	135,0	135,0	134,9	135,0	0,2	2,00
fm x 1,091	135,3	134,6	134,9	134,9	134,9	134,9	134,9	135,0	135,0	135,0	135,0	134,9	135,1	0,2	2,00
fm x 1,189	135,3	134,4	134,9	134,9	134,9	134,9	134,9	135,0	135,0	135,0	135,0	134,9	135,1	0,2	2,00
fm x 1,297	135,3	133,7	134,6	134,7	134,7	134,7	134,7	134,8	134,8	134,8	134,8	134,7	135,1	0,2	2,00
fm x 1,356	135,3	130,0	133,9	134,0	134,0	134,0	134,0	134,0	134,1	134,1	134,0	134,0	134,9	0,2	2,00
fm x 1,414	133,0	130,0	132,2	132,1	132,2	132,2	132,2	132,2	132,2	132,2	132,2	132,1	130,9	0,2	2,00
fm x 2,000	117,5	20002	107,7	100,1	100,1	100,1	100,2	100,2	100,2	100,2	100,1	100,2	0,0	0,3	2,00
fm x 4,000	93,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,4	2,00
fm × 8,000	74,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,7	2,00
fm x 16,000	65,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	2,00

U = incerteza de medição.

As frequências de teste são calculadas a partir da frequência central e de multiplicadores (como consta na primeira coluna). Por exemplo: O filtro de frequência nominal 500 Hz, cuja frequência exata, para base 10, é de 501,187 Hz, o segundo ponto acima da frequência central, pode ser calculado como: fm x 1,188 = 595,410 Hz.

L_Sup = limite superior de tolerância definido pela norma para uma determinada frequência de teste.

L_inf = limite inferior de tolerância definido pela norma para uma determinada frequência de teste. A norma não define um limite inferior para aquelas frequências preenchidas com uma linha tracejada ("---"). Na prática, a atenuação nestas frequências pode ser menos infinito.

As frequências centrais identificadas na primeira linha da tabela correspondem às frequências nominais.

As frequências centrais exatas de cada filtro (fm) são calculadas conforme a ISO 266.

Eventuais resultados = 0,0 dB correspondem a indicações de, pelo menos, 10 dB abaixo do limite L_Sup correspondente.

As tolerâncias identificadas na(s) tabela(s) não contemplam as incertezas de medição. Estas podem e devem ser consideradas como parte do resultado para estabelecer um critério de aceitação.

Página Page 8

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

Filtros de terços de oitava de classe 1 / Base 2 (tabela 1/3)

Lref em 1000 Hz = 135,0 dB

Frequência	L_Sup	L_Inf	16	20	25	31	40	50	63	80	100	125	160	+/-U	k
fm × 0, 184	65,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	2,00
fm x 0,326	74,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,7	2,00
fm × 0,530	93,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,4	2,00
fm x 0,772	117,5		106,3	106,9	106,4	106,4	107,2	106,4	106,5	107,2	106,4	106,5	107,3	0,3	2,00
fm x 0,891	133,0	130,0	131,6	131,9	131,6	131,5	131,6	131,6	131,5	131,6	131,6	131,5	131,7	0,2	2,00
fm x 0,905	135,3	130,0	133,6	133,8	133,6	133,6	133,6	133,6	133,6	133,6	133,6	133,6	133,6	0,2	2,00
fm x 0,919	135,3	133,7	134,6	134,6	134,5	134,5	134,5	134,6	134,5	134,5	134,6	134,5	134,5	0,2	2,00
fm x 0,947	135,3	134,4	134,8	134,9	134,9	134,9	134,9	134,9	134,9	134,9	134,9	134,9	135,0	0,2	2,00
fm × 0,974	135,3	134,6	134,8	134,9	134,9	134,9	134,9	134,9	134,9	134,9	135,0	135,0	135,0	0,2	2,00
fm	135,3	134,7	135,0	134,9	134,9	134,9	135,0	134,9	134,9	135,0	135,0	135,0	135,0	0,2	2,00
fm x 1,027	135,3	134,6	134,9	134,9	134,9	134,9	134,9	134,9	134,9	135,0	134,9	135,0	135,0	0,2	2,00
fm x 1,056	135,3	134,4	134,9	134,9	134,9	134,9	135,0	134,9	134,9	134,9	134,9	134,9	135,0	0,2	2,00
fm x 1,088	135,3	133,7	134,6	134,6	134,5	134,5	134,6	134,6	134,5	134,5	134,6	134,6	134,6	0,2	2,00
fm x 1,105	135,3	130,0	133,6	133,7	133,5	133,4	133,4	133,5	133,4	133,4	133,6	133,5	133,5	0,2	2,00
fm x 1,122	133,0	130,0	131,6	131,8	131,3	131,1	131,0	131,4	131,1	131,0	131,4	131,1	131,1	0,2	2,00
fm x 1,296	117,5	222	105,5	105,8	104,6	103,5	102,2	104,6	103,5	102,2	104,6	103,6	102,3	0,3	2,00
fm x 1,887	93,0	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,4	2,00
fm × 3,070	74,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,7	2,00
fm x 5,435	65,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	2,00

U = incerteza de medição.

As frequências de teste são calculadas a partir da frequência central e de multiplicadores (como consta na primeira coluna). Por exemplo: O filtro de frequência nominal 125 Hz, cuja frequência exata, para base 10, é de 125,893 Hz, o segundo ponto acima da freqüência central, pode ser calculado como: fm x 1,056 = 132,943 Hz.

L_Sup = limite superior de tolerância definido pela norma para uma determinada frequência de teste.

L_Inf = limite inferior de tolerância definido pela norma para uma determinada frequência de teste. A norma não define um limite inferior para aquelas frequências preenchidas com uma linha tracejada ("---"). Na prática, a atenuação nestas frequências pode ser menos infinito.

As frequências centrais identificadas na primeira linha da tabela correspondem às frequências nominais.

As frequências centrais exatas de cada filtro (fm) são calculadas conforme a ISO 266.

Eventuais resultados = 0,0 dB correspondem a indicações de, pelo menos, 10 dB abaixo do limite L_Sup correspondente.

As tolerâncias identificadas na(s) tabela(s) não contemplam as incertezas de medição. Estas podem e devem ser consideradas como parte do resultado para estabelecer um critério de aceitação.

Página Page 9

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

Filtros de terços de oitava de classe 1 / Base 2 (tabela 2/3)

Lref em 1000 Hz = 135,0 dB

Frequência	L_Sup	L_Inf	200	250	315	400	500	630	800	1000	1250	1600	2000	+/-U	k
fm x 0, 184	65,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	2,00
fm x 0,326	74,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,7	2,00
fm x 0,530	93,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,4	2,00
fm x 0,772	117,5		106,5	106,5	107,3	106,5	106,6	107,3	106,5	106,6	107,3	106,4	106,6	0,3	2,00
fm x 0,891	133,0	130,0	131,6	131,5	131,7	131,6	131,6	131,7	131,7	131,6	131,7	131,7	131,6	0,2	2,00
fm x 0,905	135,3	130,0	133,7	133,6	133,7	133,7	133,6	133,6	133,7	133,6	133,7	133,7	133,6	0,2	2,00
fm x 0,919	135,3	133,7	134,6	134,5	134,6	134,6	134,6	134,6	134,6	134,6	134,6	134,6	134,6	0,2	2,00
fm x 0,947	135,3	134,4	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	0,2	2,00
fm x 0,974	135,3	134,6	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	0,2	2,00
fm	135,3	134,7	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	0,2	2,00
fm x 1,027	135,3	134,6	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	0,2	2,00
fm x 1,056	135,3	134,4	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	135,0	0,2	2,00
fm x 1,088	135,3	133,7	134,6	134,6	134,6	134,6	134,6	134,6	134,6	134,6	134,6	134,6	134,6	0,2	2,00
fm x 1,105	135,3	130,0	133,6	133,5	133,5	133,5	133,5	133,5	133,6	133,5	133,5	133,6	133,5	0,2	2,00
fm x 1,122	133,0	130,0	131,4	131,2	131,1	131,4	131,2	131,1	131,4	131,2	131,1	131,5	131,2	0,2	2,00
fm x 1,296	117,5	22	104,6	103,6	102,3	104,7	103,6	102,3	104,7	103,6	102,3	104,7	103,6	0,3	2,00
fm x 1,887	93,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,4	2,00
fm × 3,070	74,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,7	2,00
fm x 5,435	65,0	0.550	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1,0	2,00

Filtros de tercos de o	itava de classe 1	l / Base 2 (tabela 3/3)	

Lref em 1000 Hz = 135,0 dB

Frequência	L_Sup	L_Inf	2500	3150	4000	5000	6300	8000	10000	12500	16000	20000	()	+/-U	k
fm x 0, 184	65,0		0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	(1)	1,0	2,00
fm x 0,326	74,0	22	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	66,4	55	0,7	2,00
$fm \times 0,530$	93,0	trackets.	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	88,3	1444	0,4	2,00
fm x 0,772	117,5		107,3	106,5	106,6	107,3	106,5	106,5	107,3	108,2	110,3	114,5		0,3	2,00
fm x 0,891	133,0	130,0	131,7	131,7	131,6	131,7	131,6	131,5	131,7	131,7	131,5	131,9		0,2	2,00
fm x 0,905	135,3	130,0	133,7	133,7	133,6	133,7	133,7	133,6	133,6	133,6	133,4	133,4	1,1	0,2	2,00
fm x 0,919	135,3	133,7	134,6	134,6	134,6	134,6	134,6	134,6	134,6	134,5	134,4	134,3		0,2	2,00
fm x 0,947	135,3	134,4	135,0	135,0	135,0	135,0	135,0	135,0	134,9	134,9	135,0	135,1	()	0,2	2,00
$\text{fm} \times 0,974$	135,3	134,6	135,0	135,0	135,0	135,0	135,0	135,0	135,0	134,9	135,0	135,2		0,2	2,00
fm	135,3	134,7	135,0	135,0	135,0	135,0	135,0	135,0	134,9	135,0	135,0	135,2		0,2	2,00
fm x 1,027	135,3	134,6	135,0	135,0	135,0	135,0	135,0	135,0	134,9	135,0	135,1	135,2	0,000	0,2	2,00
fm x 1,056	135,3	134,4	135,0	135,0	135,0	135,0	135,0	134,9	134,9	135,0	135,1	135,2		0,2	2,00
fm x 1,088	135,3	133,7	134,6	134,6	134,6	134,6	134,6	134,6	134,5	134,6	134,9	135,1	()	0,2	2,00
fm x 1,105	135,3	130,0	133,5	133,6	133,5	133,5	133,6	133,5	133,4	133,4	134,3	134,6	S===1	0,2	2,00
fm x 1,122	133,0	130,0	131,1	131,4	131,2	131,1	131,4	131,1	131,0	130,8	132,2	132,1	11	0,2	2,00
fm x 1,296	117,5	-	102,3	104,7	103,6	102,3	104,6	103,6	102,3	0,0	0,0	0,0		0,3	2,00
fm x 1,887	93,0	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	(555)	0,4	2,00
$fm \times 3,070$	74,0	1	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0===0	0,7	2,00
fm x 5,435	65,0		0,0	0,0	0,0	0,0	55,9	59,1	0,0	0,0	0,0	56,0		1,0	2,00

Página

Laboratório de Calibração Acreditado pela Cgcre (Coordenação Geral de Acreditação do Inmetro) de acordo com a ABNT NBR ISO/IEC 17025 sob o número CAL 0307.

CRITÉRIOS DA NORMA IEC 61672-1:2013 PARA ESTABELECER A CONFORMIDADE DO SONÔMETRO:

A norma IEC 61672-1:2013 estabelece, para cada um dos testes, critérios de tolerância e incertezas máximas que podem ser praticadas. Com relação às incertezas, o laboratório identifica antecipadamente se o critério de incertezas máximas é atendido e, portanto, não há necessidade, a priori, do cliente fazer esta comprovação. Para identificar se o sonômetro atende determinada tolerância a norma estabelece que os erros não devem exceder os limites de tolerância definidos para o teste. Por exemplo, se uma determinada tolerância for de 1 dB, os valores absolutos do erro não deverão exceder a 1 dB.

Observações adicionais sobre conformidade, exclusivas desta calibração:

A norma IEC 61672-3: 2013 é uma norma que foi criada no âmbito da metrologia legal em sua origem, e, por isso, estabelece frases obrigatórias de conformidade geral do equipamento na conclusão dos testes periódicos. Essas frases têm como objetivo determinar a conformidade do sonômetro à IEC 61672-1:2013, sendo que, para isso, segundo esta própria norma, além de ser aprovado nos testes periódicos da IEC 61672-3:2013, o sonômetro deve também ter tido o seu modelo aprovado pela IEC 61672-2:2013 por meio de uma organização independente, isto é, instituições que gozam de reconhecimento internacional para tal fim. A tradução brasileira da parte 3 desta norma, a ABNT NBR IEC 61672-3:2018, por ser estritamente literal, também inclui tais frases.

No contexto brasileiro os testes periódicos da ABNT NBR IEC 61672-3:2018, como aqueles constantes neste certificado, são realizados, em geral, por laboratórios da Rede Brasileira de Calibração (RBC), no âmbito da metrologia científica. Se um ou mais testes apresentarem erros acima das tolerâncias especificadas na IEC 61672-1:2013, já constitui-se evidência suficiente da não conformidade do sonômetro à esta norma como um todo. Entretanto, se todos os testes apresentarem erros abaixo das tolerâncias especificadas na IEC 61672-1:2013, a conformidade do sonômetro não pode ser formalmente assegurada pelo laboratório RBC, uma vez que este não possui prerrogativas legais para reconhecer uma suposta evidência de aprovação de modelo pela IEC 61672-2:2013, e portanto, não pode fazer afirmações categóricas a este respeito. Assim sendo, as frases obrigatórias da ABNT NBR IEC 61672-3:2018, referentes ao caso em que o sonômetro tenha sido aprovado em todos os seus testes periódicos, ficam sujeitas à evidência pública - seja do cliente, do fabricante ou de organização independente - quanto à aprovação de modelo segundo a IEC 61672-2:2013, ou ainda, à ausência desta.

Portanto, caso haja evidência pública de aprovação de modelo pela IEC 61672-2:2013, aplica-se a seguinte conclusão normativa ao sonômetro submetido ao teste periódico:

"O sonômetro submetido ao teste completou com sucesso os testes periódicos da ABNT NBR IEC 61672-3:2018, para as condições ambientais em que os ensaios foram realizados. Como evidência estava publicamente disponível, a partir de uma organização de testes independente, responsável por aprovar os resultados dos testes de aprovação de modelo realizados de acordo com a IEC 61672-2:2013, para demonstrar que o modelo de sonômetro está completamente conforme os requisitos da classe X da IEC 61672-1:2013, o sonômetro submetido aos ensaios está em conformidade com os requisitos para classe X da IEC 61672-1:2013."

Caso não haja evidência pública de aprovação de modelo pela IEC 61672-2:2013, aplica-se a seguinte conclusão normativa ao sonômetro submetido ao teste periódico:

"O sonômetro submetido ao teste completou com sucesso os testes periódicos da ABNT NBR IEC 61672-3:2018, para as condições ambientais em que os ensaios foram realizados. Entretanto, nenhuma declaração geral ou conclusão pode ser feita a respeito da conformidade do sonômetro a todas as especificações da IEC 61672-1:2013, porque (a) nenhuma evidência estava publicamente disponível, a partir de uma organização independente de testes responsável pela aprovação de modelo, para demonstrar que o modelo do sonômetro está completamente em conformidade com as especificações para a classe X da IEC 61672-1:2013 ou que os dados de correção para o teste acústico de ponderação em frequência não foram fornecidos no manual de instrução e (b) porque os testes periódicos da ABNT NBR IEC 61672-3:2018 cobrem apenas um conjunto limitado de especificações da IEC 61672-1:2013."

Observações adicionais exclusivas desta calibração: (---)

(fim do resultados)

Opiniões e interpretações (não fazem parte do escopo de acreditação)

Opinions and interpretations (not covered by accreditation scope

(-----

RBC - Rede Brasileira de Calibração

Certificado de Calibração

Certificado Nº: 131.969

Página 1 de 8

Laboratório de Acústica

Dados do Cliente:

Nome:

Sonora Ambiental Projetos Ambientais e Educacionais Ltda

Endereço: Rua das Figueiras, 07

Cidade: Brasilia Estado: DF CEP: 71906-750

Nome: Marca:

Medidor de Nível Sonoro

01 dB

Solo

Modelo: Nº de Série:

Nº de Patrimônio:

Não consta

Nº de Identificação: N° de Processo: Data da Emissão:

Data da Calibração:

Não consta 48093

03/02/22 03/02/22

Procedimento Utilizado:

O procedimento operacional de calibração PRO – MNS – 1000 rev.08

65236

Norma de Referência:

IEC 60651: 2001

Padrões Utilizados:

Nome Gerador de Funções Calibrador Eletro-Acústico Barômetro Termo-Higrômetro

TAG 0053 TAG 0042 TAG 0273 TAG 0273(2)

Nº Identificação N° Certificado RBC-18/0602 DIMCI 0209/2020 121.171 122.242

Rastreabilidade INMETRO

RBC

Data de Validade 19/10/23 28/02/23 08/02/22 09/02/22

LABORATÓRIO DE CALIBRAÇÃO ACREDITADO PELA CGCRE DE ACORDO COM A ABNT NBR ISO/IEC 17025 SOB O NÚMERO 256

Chrompack Inst. Cientif. Ltda

Av. Eng ° Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

Certificado de Calibração Certificate of Calibration

Certificado Nº: 131.969

Página 2 de 8

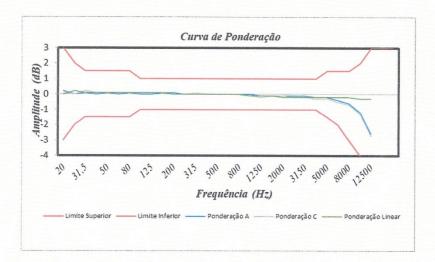
Ponderação em frequência:

Configuração do instrumento sob medição: Frequência de referência: 1000 Hz Nível de referência: 94,0 dB

Faixa de nível de referência: 20 dB a 137 dB Parâmetro: dB (A) Slow

Frequência nominal (Hz)	Frequência exata (Hz)	Ponderação A Desvio indicado (dB)	Ponderação C Desvio indicado (dB)	Resposta Linear Desvio indicado (dB)	Tolerânci em dB
			, , ,	(==)	
20	19,95	0,2	0,1	0,0	±3
25	25,12	0,0	0,0	0,2	±2
31,5	31,62	0,1	0,2	0,1	± 1,5
40	39,81	0,0	0,1	0,1	± 1,5
50	50,12	0,1	0,1	0,1	± 1,5
63	63,10	0,0	0,1	0,1	± 1,5
80	79,43	0,1	0,1	0,1	± 1,5
100	100,0	0,0	0,1	0,1	±1
125	125,9	0,0	0,1	0,1	±1
160	158,5	0,1	0,1	0,1	±1
200	199,5	0,1	0,0	0,0	±1
250	251,2	0,0	0,0	0,0	±1
315	316,2	0,0	0,1	0,0	±1
400	398,1	0,0	0,0	0,0	±1
500	501,2	0,0	0,0	0,0	±1
630	631,0	0,0	0,0	0,0	±1
800	794,3	0,0	0,0	0,0	±1
1000	1000	0,0	-0,1	-0,1	±1
1250	1259	-0,1	-0,2	-0,1	±1
1600	1585	-0,1	-0,1	-0,1	±1
2000	1995	-0,1	-0,1	-0,2	±1
2500	2512	-0,1	-0,2	-0,2	±1
3150	3162	-0,1	-0,2	-0,2	±1
4000	3981	-0,2	-0,3	-0,2	±1
5000	5012	-0,2	-0,3	-0,2	± 1,5
6300	6310	-0,4	-0,5	-0,2	+1,5; -2
8000	7943	-0,6	-0,7	-0,2	+1,5; -3
10000	10000	-1,2	-1,3	-0,3	+ 2; -4
12500	12590	-2,6	-2,7	-0,3	+3;-6

Av. Eng° Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br



Certificate of Calibration

Certificado Nº: 131.969

Página 3 de 8

Gráfico das Ponderações em Frequência:

Av. Eng* Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

Certificado de Calibração Certificate of Calibration

Certificado Nº: 131.969

Página 4 de 8

Linearidade:

Configuração do instrumento sob medição: Frequência de referência: 1000 Hz Nível de referência: 94,0 dB

Faixa de nível de referência: 20 dB a 137 dB Parâmetro medido: dB (A) Slow

Faixa de nível (dB)	Nível esperado (dB)	Desvio indicado (dB)	Tolerância (±dB)
20 dB a 137 dB	137,0	0,0	
20 dB a 137 dB	127,0	0,0	
20 dB a 137 dB	117,0	0,0	
20 dB a 137 dB	107,0	0,0	
20 dB a 137 dB	97,0	0,0	
20 dB a 137 dB	87,0	-0,1	
20 dB a 137 dB	77,0	0,0	1,0
20 dB a 137 dB	67,0	0,0	
20 dB a 137 dB	57,0	-0,1	
20 dB a 137 dB	47,0	0,0	
20 dB a 137 dB	37,0	0,2	
20 dB a 137 dB	31,0	0,8	

Av. Eng° Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

Certificado de Calibração

Certificado Nº: 131.969

Página 5 de 8

Detector RMS:

Configuração do instrumento sob medição: Frequência de referência: 2000 Hz Nível de referência: 94,0 dB

Faixa de nível de referência: 20 dB a 137 dB Parâmetro medido: dB (Z) Slow

Sinal	Nível indicado (dB)	Desvio indicado (dB)	Faixa de nível (dB)	Tolerância em dB
Seno (FC=3)	93,9	-0,1	20 dB a 137 dB	± 0,5
Seno (FC=5)	93,9	-0,1	20 dB a 137 dB	± 1,0
Seno (FC=10)	94,0	0,0	20 dB a 137 dB	± 1,5
Quadrado (FC=-3)	93,9	-0,1	20 dB a 137 dB	±0,5
Quadrado (FC=+3)	93,9	-0,1	20 dB a 137 dB	±0,5
Quadrado (FC=-5)	93,8	-0,2	20 dB a 137 dB	± 1,0
Quadrado (FC=+5)	93,8	-0,2	20 dB a 137 dB	± 1,0
Quadrado (FC=-10)	93,8	-0,2	20 dB a 137 dB	± 1,5
Quadrado (FC=+10)	93,9	-0,1	20 dB a 137 dB	±1.5

Ponderação Temporal:

Configuração do instrumento sob medição: Frequência de referência: 2000 Hz Nível de referência: 94,0 dB Faixa de nível de referência: 20 dB a 137 dB Duração do trem de tons de teste 500 ms Parâmetro medido: dB (Z) Slow (max)

-	Faixa de nível (dB)	Nível esperado (dB)	Desvio (dB)	Tolerância em dB
	20 dB a 137 dB	128,9	0,0	
-	20 dB a 137 dB	118,9	-0,1	
The same of the sa	20 dB a 137 dB	108,9	0,0	
-	20 dB a 137 dB	98,9	0,0	± 1,0
-	20 dB a 137 dB	88,9	0,0	
-	20 dB a 137 dB	78,9	0,1	

Av. Eng* Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

Certificado de Calibração Certificate of Calibration

Certificado Nº: 131.969

Página 6 de 8

Ponderação temporal (continuação):

Configuração do instrumento sob medição: Frequência de referência: 2000 Hz Nível de referência: 94,0 dB Faixa de nível de referência: 20 dB a 137 dB Duração do trem de tons de teste 200 ms Parâmetro medido: dB (Z) Fast (max)

Faixa de nível (dB)	Nível esperado (dB)	Desvio (dB)	Tolerância em dE
20 dB a 137 dB	132,0	-0,1	
20 dB a 137 dB	122,0	-0,3	
20 dB a 137 dB	112,0	-0,1	
20 dB a 137 dB	102,0	0,0	+1,0 / -1,0
20 dB a 137 dB	92,0	-0,3	
20 dB a 137 dB	82,0	-0,2	

Configuração do instrumento sob medição: Frequência de referência: 2000 Hz Nível de referência: 94,0 dB

Faixa de nível de referência: 20 dB a 137 dB Duração do trem de tons de teste 20 ms Parâmetro medido: dB (Z) Impulse (max)

Faixa de nível (dB)	Nível esperado (dB)	Desvio (dB)	Tolerância em dB
20 dB a 137 dB	133,4	-0,1	
20 dB a 137 dB	123,4	-0,2	
20 dB a 137 dB	113,4	-0,2	
20 dB a 137 dB	103,4	-0,1	±1,5
20 dB a 137 dB	93,4	-0,3	
20 dB a 137 dB	83,4	-0,2	

Av. Eng^o Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

Certificado de Calibração

Certificate of Calibration

Certificado Nº: 131.969

Página 7 de 8

Ponderação temporal (continuação):

Configuração do instrumento sob medição: Frequência de referência: 2000 Hz Nível de referência: 94,0 dB Faixa de nível de referência: 20 dB a 137 dB Duração do trem de tons de teste 5 ms Parâmetro medido: dB (Z) Impulse (max)

Faixa de nível (dB)	Nível esperado (dB)	Desvio (dB)	Tolerância em dB
20 dB a 137 dB	128,2	-0,3	
20 dB a 137 dB	118,2	0,0	
20 dB a 137 dB	108,2	-0,1	
20 dB a 137 dB	98,2	-0,2	± 2,0
20 dB a 137 dB	88,2	-0,1	
20 dB a 137 dB	78,2	-0,2	

Configuração do instrumento sob medição: Frequência de referência: 2000 Hz Nível de referência: 94,0 dB Faixa de nível de referência: 20 dB a 137 dB Duração do trem de tons de teste 2 ms Parâmetro medido: dB (Z) Impulse (max)

Faixa de nível (dB)	Nível esperado (dB)	Desvio (dB)	Tolerância em dB
20 dB a 137 dB	124,4	-0,1	
20 dB a 137 dB	114,4	-0,2	
20 dB a 137 dB	104,4	-0,2	
20 dB a 137 dB	94,4	-0,2	± 2,0
20 dB a 137 dB	84,4	-0,2	
20 dB a 137 dB	74,4	-0,2	

Av. Eng° Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

Certificado de Calibração

Certificado Nº: 131.969

Página 8 de 8

Método de Medição:

Os resultados foram obtidos através da aplicação de sinais elétricos, substituindo o microfone por adaptador com capacitância equivalente, os sinais são especificados pela norma IEC 60651 de modo a satisfazer os testes descritos como ponderação em frequência, linearidade, detector RMS e ponderação temporal.

Observações:

Condições ambientais:

Temperatura: 26°C

Umidade relativa media: 50%

Pressão atmosférica: 930mbar

- A incerteza de medição elétrica não excede a ± 0,2 dB.
- Desvio: diferença entre o nível indicado e nível esperado.
- Fator de abrangência k=2.
- Anotação de Responsabilidade Técnica ART 28027230200540653 / CREA-SP.
- O microfone número de série: 103461 que acompanha o Medidor de Nível Sonoro foi calibrado separadamente. abla
- V Certificado Assinado Eletronicamente.
- Responsável Pela Calibração: Ramon Marra

Declaração de conformidade dos resultados obtidos em relação as tolerâncias da norma IEC 60651

1. Ponderação em Frequência A	Em acordo	3. Detector RMS - Onda Quadrada FC: -5	Em acordo
Ponderação em Frequência C Ponderação em Frequência Z ou L Linearidade Detector RMS - Onda Senoidal FC: 3 Detector RMS - Onda Senoidal FC: 5	Em acordo Em acordo Em acordo Em acordo Em acordo	3. Detector RMS - Onda Quadrada FC: -10 3. Detector RMS - Onda Quadrada FC: +3 3. Detector RMS - Onda Quadrada FC: +5 3. Detector RMS - Onda Quadrada FC: +10 4. Ponderação Temporal Slow	Em acordo Em acordo Em acordo Em acordo Em acordo Em acordo
Detector RMS - Onda Senoidal FC: 10 Detector RMS - Onda Quadrada FC: -3	Em acordo Em acordo	Ponderação Temporal Fast Ponderação Temporal Impulse	Em acordo Em acordo

Signatário autorizado

Alexandre Fascina

Av. Engº Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

RBC - Rede Brasileira de Calibração

Certificado de Calibração

Certificado Nº: 132.088

Página 1 de 3

Laboratório de Eletro-Acústico

Dados do Cliente:

Nome: Endereço: Sonora Ambiental Projetos Ambientais e Educacionais Ltda

Rua das Figueiras, 07

Cidade: Estado: Brasília DF

CEP:

N° de Processo: 48093

71906-750

Data da Calibração: Data da Emissão:

08/02/22

08/02/22

polegada

Características do microfone calibrado:

Nome: Marca: Microfone Capacitivo

01 dB

N° de Série: 103461

Modelo:

MCF212 Não consta

Nº de Identificação: Diâmetro: 1/2

Tensão de Polarização: 0V Diá Sensibilidade Nominal 50,00 mV/Pa ref 250 Hz

Procedimento Utilizado:

O procedimento operacional de calibração PRO - MIC -2000 rev.05

Norma de Referência: IEC 61094-6 de 2004

Padrões Utilizados:

Nome	Nº Identificação	N° Certificado	Rastreabilidade	Data de Validade
Gerador de Funções	TAG 0053	RBC-18/0602	RBC	19/10/23
Multímetro	TAG 0444	RBC-19/0409	RBC	18/06/22
Fonte	TAG 0011	170 574-101	RBC	13/01/23
Atuador 1/2" Polegada	TAG 0059	DIMCI 0336/2019	INMETRO	25/02/22
Fonte	TAG 223 (2)	DIMCI 0336/2019	INMETRO	25/02/22
Microfone	TAG 0222	DIMCI 0194/2017	INMETRO	09/02/22
Pistonfone	TAG 0106	DIMCI 0335/2019	INMETRO	19/02/22
Barômetro	TAG 0273	121.171	RBC	09/02/22
Termo-Higrômetro	TAG 0273(2)	122.242	RBC	09/02/22

LABORATÓRIO DE CALIBRAÇÃO ACREDITADO PELA CGCRE DE ACORDO COM A ABNT NBR ISO/IEC 17025 SOB O NÚMERO 256

Chrompack Inst. Cientif. Ltda Av. Eng ° Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

Certificate of Calibration

Certificado Nº: 132.088

Desde 1996

Página 2 de 3

Resultados Obtidos:

Os resultados apresentados a seguir associados as suas incertezas de medições expandidas tem como finalidade demonstrar a sensibilidade do microfone calibrado em três diferentes vertentes:

Resposta em função da frequência pelo método do atuador eletrostático especificado pela norma internacional IEC 61094-6 "Electrostatic actuators for determination of frequency response", a Sensibilidade em mV/Pa ref. 250 Hz (milivolt por Pascal) e a Sensibilidade em dB ref 1V/Pa obtidas pelo método comparativo ao microfone padrão laboratorial utilizado como referência.

FE (Hz)	Resp. Frequência (dB)	Sensibilidade	Sensibilidade	k	U95,45 (dB)	
	re. 250 Hz	mV/Pa re. 250 Hz	dB re. 1 V/Pa		000,10 (00	
25,12	-0,29	47,25	-26,51	2,01	0,30	
31,62	-0,20	47,77	-26,42	2,00	0,28	
39,81	-0,19	47,81	-26,41	2,02	0,30	
50,12	-0,14	48,10	-26,36	2,02	0,30	
63,10	-0,08	48,41	-26,30	2,02	0,30	
79,43	-0,08	48,43	-26,30	2,01	0,29	
100,0	-0,07	48,50	-26,28	2,02	0,29	
125,9	-0,07	48,50	-26,28	2,02	0,30	
158,5	-0,05	48,56	-26,27	2,01	0,29	
199,5	-0,05	48,58	-26,27	2,01	0,29	
251,2	0,00	48,87	-26,22	2,00	0,17	
316,2	-0,01	48,83	-26,23	2,00	0,17	
398,1	-0,01	48,81	-26,23	2,00	0,17	
501,2	-0,02	48,77	-26,24	2,00	0,17	
631,0	-0,03	48,68	-26,25	2,00	0,17	
794,3	-0,05	48,60	-26,27	2,00	0,17	
1000	-0,09	48,35	-26,31	2,00	0,17	
1259	-0,12	48,18	-26,34	2,00	0,17	
1585	-0,22	47,66	-26,44	2,00	0,19	
1995	-0,33	47,04	-26,55	2,00	0,19	
2512	-0,52	46,04	-26,74	2,01	0,20	
3162	-0,78	44,65	-27,00	2,01	0,20	
3981	-1,06	43,26	-27,28	2,00	0,19	
5012	-1,58	40,72	-27,80	2,00	0,19	
6310	-2,18	38,04	-28,39	2,00	0,21	
7943	-3,09	34,25	-29,31	2,00	0,33	
10000	-4,32	29,72	-30,54	2,00	0,38	
12590	-5,61	25,62	-31,83	2,02	0,45	
15850	-7,15	21,46	-33,37	2,00	0,41	
19950	-9,09	17,16	-35,31	2,00	0,48	

Av. Eng° Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

Certificado de Calibração Certificate of Calibration

Certificado Nº: 132.088

Página 3 de 3

Observações:

- ☑ Condições ambientais: Temperatura: 25°C Umidade relativa media: 50% Pressão atmosférica: 930mbar
- ☑ Anotação de Responsabilidade Técnica ART 28027230200540653 / CREA-SP.
- ☑ Certificado Assinado Eletronicamente
- ☑ Responsável pela Calibração: Ramon Marra

Signatário autorizado:

Alexandre Fascina

Av. Eng° Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

RBC - Rede Brasileira de Calibração

Certificado de Calibração

Certificado Nº: 138.681

Página 1 de 3

Laboratório de Acústica

Dados do Cliente:

Nome: Sérgio Luiz Garavelli Endereço: Rua 4, Lote 10 Cidade: Águas Claras

DF

Estado: 71937-000 CEP. Nº de Processo: 50585

Data da Calibração: Data da Emissão:

23/09/2022

23/09/2022

Características do microfone calibrado:

Nome:

Microfone Capacitivo

G.R.A.S

Modelo:

40CE

Nº de Série: 259694 Tensão de Polarização: OV Nº de Identificação: Diâmetro:

Não consta 1/2 Polegada

50 mV/Pa ref 250 Hz Sensibilidade Nominal:

Procedimento Utilizado:

O procedimento operacional de calibração PRO – MIC –2000 rev.05

Norma de Referência: IEC 61094-6 de 2004

Padrões Utilizados:

Nome	Nº Identificação	N° Certificado	Rastreabilidade	Data de Validade
Gerador de Funções	TAG 0053	RBC-18/0602	RBC	19/10/2023
Multímetro	TAG 0444	RBC-19/0409	RBC	18/06/2023
Fonte	TAG 0011	170 574-101	RBC	13/01/2023
Atuador 1/2" Polegada	TAG 0059	DIMCI 0336/2019	INMETRO	25/02/2023
Fonte	TAG 223 (2)	DIMCI 0336/2019	INMETRO	25/02/2023
Microfone	TAG 0478	DIMCI 1338/2021	INMETRO	08/12/2024
Pistonfone	TAG 0106	DIMCI 0335/2019	INMETRO	19/02/2023
Termo-Higrômetro	TAG 0273	132.030	RBC	07/02/2023
Barômetro	TAG 0273(2)	135.276	RBC	07/02/2023

LABORATÓRIO DE CALIBRAÇÃO ACREDITADO PELA CGCRE DE ACORDO COM A ABNT NBR ISO/IEC 17025 SOB O NÚMERO 256

Chrompack Inst. Cientif. Ltda Av. Eng ° Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.bi

Certificado Nº: 138.681

Página 2 de 3

Resultados Obtidos:

Os resultados apresentados a seguir associados as suas incertezas de medições expandidas tem como finalidade demonstrar a sensibilidade do microfone calibrado em três diferentes vertentes:

Resposta em função da frequência pelo método do atuador eletrostático especificado pela norma internacional IEC 61094-6 "Electrostatic actuators for determination of frequency response", a Sensibilidade em mV/Pa ref. 250 Hz (milivolt por Pascal) e a Sensibilidade em dB ref 1V/Pa obtidas pelo método comparativo ao microfone padrão laboratorial utilizado como referência.

	Resp. Frequência	Sensibilidade	Sensibilidade			
FF (11-)	(dB)	Selisibilidade	Serisibilidade	k	HOE 4E (AD	
FE (Hz)	re. 250 Hz	mV/Pa re. 250 Hz	dB re. 1 V/Pa	K	U95,45 (dB)	
25,12	-0,23	39,85	-27,99	2,00	0,29	
31,62	-0,20	39,99	-27,96	2,00	0,27	
39,81	-0,02	40,79	-27,79	2,01	0,29	
50,12	-0,03	40,75	-27,80	2,00	0,27	
63,1	-0,01	40,83	-27,78	2,00	0,27	
79,43	0,01	40,94	-27,76	2,00	0,27	
100	0,01	40,95	-27,76	2,00	0,27	
125,9	0,01	40,95	-27,75	2,00	0,27	
158,5	0,00	40,91	-27,76	2,00	0,27	
199,5	0,01	40,95	-27,76	2,00	0,27	
251,2	0,00	40,90	-27,77	2,00	0,17	
316,2	0,00	40,91	-27,76	2,00	0,17	
398,1	0,00	40,90	-27,77	2,00	0,17	
501,2	-0,01	40,83	-27,78	2,00	0,17	
631	-0,03	40,76	-27,80	2,00	0,17	
794,3	-0,06	40,61	-27,83	2,00	0,17	
1000	-0,07	40,59	-27,83	2,00	0,17	
1259	-0,10	40,42	-27,87	2,00	0,17	
1585	-0,20	39,98	-27,96	2,00	0,19	
1995	-0,28	39,59	-28,05	2,00	0,19	
2512	-0,46	38,81	-28,22	2,00	0,19	
3162	-0,69	37,78	-28,45	2,00	0,19	
3981	-1,03	36,35	-28,79	2,00	0,19	
5012	-1,46	34,58	-29,22	2,00	0,19	
6310	-2,03	32,37	-29,80	2,00	0,21	
7943	-2,80	29,62	-30,57	2,00	0,32	
10000	-3,88	26,15	-31,65	2,00	0,36	
12590	-5,11	22,72	-32,87	2,00	0,41	
15850	-6,31	19,79	-34,07	2,00	0,43	
19950	-7,94	16,40	-35,70	2,00	0,48	

Av. Eng* Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

Certificado Nº: 138.681

Página 3 de 3

Observações:

- ☑ Condições ambientais:

 Temperatura: 23°C

 Umidade relativa medida: 51 %UR

 Pressão atmosférica: 928 hPa
- ☑ Anotação de Responsabilidade Técnica ART 28027230220241416 / CREA-SP.

Responsável pela calibração e signatário autorizado:

José Nilton

Av. Eng° Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

RBC - Rede Brasileira de Calibração

Certificado de Calibração

Certificado Nº: 131.852

Página 1 de 2

Desde 19

Laboratório de Acústica

Dados do Cliente:

Sonora Ambiental Projetos Ambientais e Educacionais Ltda Nome:

Rua das Figueiras, 07 Endereço:

Brasilia Cidade: DF Estado: CEP:

71906-750

Dados do Instrumento Calibrado:

Nome: Calibrador de Nível Sonoro

01 dB Marca: Modelo: CAL21 34113633(2011) N° de Série:

Nº de Patrimônio: Não consta Classe: Nº de Identificação: 192/ALC Nº de Processo: 48093

30/01/22 Data da Calibração: Data da Emissão: 30/01/22

Características do item:

Nível de pressão sonora nominal: 94 dB (dB re. 20 µPa) Frequência nominal: 1000 Hz

Procedimento Utilizado:

O procedimento operacional de calibração PRO - CNS - 1300 rev.09

Norma de Referência:

IEC 60942: 1997, itens 5.2 e 5.3

Padrões Utilizados:

Nome	Nº Identificação	N° Certificado	Rastreabilidade	Data de Validade
Pistonfone	TAG 0106	DIMCI 0335/2019	INMETRO	19/02/22
Microfone	TAG 0048	DIMCI 0662/2019	INMETRO	25/04/22
Fonte	TAG 0011	170 574-101	RBC	13/01/23
Multímetro	TAG 0444	RBC-19/0409	RBC	18/06/22
Barômetro	TAG 0273	121.171	RBC	08/02/22
Termo-Higrômetro	TAG 0273(2)	122.242	RBC	09/02/22
Contador Universal	TAG 0041	RBC-19/0414	RBC	23/06/22

LABORATÓRIO DE CALIBRAÇÃO ACREDITADO PELA COCRE DE ACORDO COM A ABNT NBR ISO/IEC 17025 SOB O NÚMERO 256

Av. Eng ° Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

Certificado de Calibração

Certificado Nº: 131.852

Página 2 de 2

Resultados Obtidos:

O(s) resultado(s) do nível (eis) sonoro(s) e frequência(s) apresentados a seguir foram obtidos através do método comparativo extraindo-se a leitura do microfone padrão acoplado a cavidade do calibrador . Inicialmente o nível sonoro é lido em volts e posteriormente convertido em dB, a frequência lida no medidor de frequência digital diretamente e ambos valores são comparados aos parâmetros (tolerâncias) da norma IEC 60942: 1997, itens 5.2 e 5.3 de acordo com sua classe de fabricação.

Dados Obtidos

	Calculation was district	RESULTADOS	OBTIDOS	art to the same of	
Nível Sonoro Médio em dB	k	U _{95,45} (dB)	Frequência Média em Hz	k	U _{95,45} (Hz)
94,05	2,09	0,14	1002,5	2,00	0,1

Especificações da norma IEC 60942: 1997, itens 5.2 e 5.3: Nível de Pressão Sonora para classe 1: ± 0,30 dB / Frequência: ± 2,0 %

k – Fator de abrangência

U95,45 – Incerteza da Medição expandida para uma probabilidade de abrangência de 95,45%

dB - Decibels

Hz - Hertz

** - Ajuste / Reparo não necessário ou leitura(s) indisponível (eis)

Observações:

🗹 Condições ambientais: Temperatura: 25 °C - Umidade relativa: 50 % - Pressão atmosférica: 930 mbar

☑ Este calibrador de nível de pressão sonora encontra-se em acordo com a norma IEC 60942: 1997, itens 5.2 e 5.3

Anotação de Responsabilidade Técnica - ART 28027230200540653 / CREA-SP.

Responsável pela Calibração: Ramon Marra

Signatário autorizado:

Alexandre Fascina

Av. Engº Saraiva de Oliveira, 465 - 05741-200 - Jd. Taboão - São Paulo - SP - Brasil Fone: 55 11 3384-9320 - www.chrompack.com.br

Anexo 4 – Anotação de Responsabilidade Técnica (ART)

25/08/22. 15:36

https://art.creadf.org.br/art1025/funcoes/form_impressao_tos.php?NUMERO_DA_ART=0720220070226

otação de Responsabilidade Técnica - ART Lei nº 6.496, de 7 de dezembro de 1977

ART Obra ou servico 0720220070226

Conselho Regional de Engenharia e Agronomia do Distrito Federal

Responsável Técnico

EDSON BENICIO DE CARVALHO JUNIOR

Título profissional: Engenheiro Civil

RNP: 0720365325 Registro: 31125/D-DF

Empresa contratada: SONORA AMBIENTAL PROJETOS AMBIENTAIS E EDUCACIONAIS LTDA Registro:

2. Dados do Contrato-

Contratante: AEROPORTOS DO NORDESTE DO BRASIL S.A

CNPJ: 33.919.741/0001-20 Bairro: Boa Viagem CEP: 51030-300

Rua Barão de Souza Leão Número: 425 Cidade: Recife UF: PE

Complemento: Sala 1901 Fone: (83)33325044

E-Mail: RRibeiro@aenabrasil.com.br

Valor Obra/Serviço R\$: Celebrado em: 15/07/2022

788.800,00

Vinculada a ART:

Tipo de contratante: Pessoa Jurídica de Direito Privado

Ação institucional: Nenhuma/Não Aplicável

3. Dados da Obra/Serviço

Data de Fim das Atividades do Profissional: 15/07/2023

Coordenadas Geográficas: -8.1318203,-34.9060681

Data de Início das Atividades do Profissional: 15/07/2022 Finalidade: Ambiental

Código/Obra pública: CNPJ: 33.919.741/0001-20

Proprietário: AEROPORTOS DO NORDESTE DO BRASIL S.A

E-Mail: RRibeiro@aenabrasil.com.br

Fone: (83) 33325044

1° Endereço

Rua Barão de Souza Leão

Número: 425

CEP: 51030-300 Bairro: Boa Viagem Complemento: Sala 1901 Cidade: Recife - PE

4. Atividade Técnica

Consultoria

Quantidade Unidade

Consultoria de impacto ambiental

1,0000

Após a conclusão das atividades técnicas o profissional deverá proceder à baixa desta ART.

Monitoramento do ruído aeronáutico e emissões atmosféricas: Aeroporto Internacional do Recife/Guararapes, Aeroporto Internacional de Maceió, Aeroporto Internacional de Aracaju, Aeroporto de Campina Grande, Aeroporto de Juazeiro do Norte

6. Declarações

Qualquer conflito ou litígio originado do presente contrato, bem como sua interpretação ou execução, será resolvido por arbitragem, de acordo com a Lei nº

Profissional do Maceió de Campina do Aracaju, Aeroporto de Campina Grande, Aeroporto de Juazeiro do Senso de Campina Grande, Aeroporto de EDSON

BENÍCIO DE

CARVALHO

JÚNIOR

Profissional do Recepción de Campina do Aracaju, Aeroporto de Campina Grande, Aeroporto de Luazeiro do Aracaju, Aeroporto de Campina Grande, Aeroporto de Juazeiro do Aracaju, Aeroporto de Campina Grande, Aeroporto de Juazeiro do Aracaju, Aeroporto de Campina Grande, Aeroporto de Luazeiro do Aracaju, Aeroporto de Campina Grande, Aeroporto de Luazeiro do Aracaju, Aeroporto de Campina Grande, Aeroporto de Luazeiro do Aracaju, Aeroporto de Campina Grande, Aeroporto de Juazeiro do Aracaju, Aeroporto de Campina Grande, Aeroporto de Luazeiro do Aracaju, Aeroporto de Campina Grande, Aeroporto de Luazeiro do Aracaju, Aeroporto de Campina Grande, Aeroporto de Luazeiro do Aracaju, Aeroporto de Campina Grande, Aeroporto de Luazeiro do Aracaju, Aeroporto de Campina Grande, Aeroporto de Luazeiro do Aracaju, Aeroporto de Campina Grande, Aeroporto de Luazeiro do Aracaju, Aeroporto de Campina Grande, Aeroporto de Campina Grande, Aeroporto de Luazeiro de Aracaju, Aeroporto de Campina Grande, Aeroporto de Luazeiro de Aracaju, Aeroporto de Campina Grande, Aeroporto de Luazeiro de Aracaju, Aeroporto de Campina Grande, Aeroporto de Campina Grande

interpretação ou execução, será resolvido por arbitragem, de acordo com a Lei nº 9.307, de 23 de setembro de 1996, nos termos do respectivo regulamento de arbitragem que, expressamente, as partes declaram concordar.

Contratante

Acessibilidade: Não: Declaro que as regras de acessibilidade, previstas nas normas técnicas da ABNT e no Decreto n° 5.296, de 2 de dezembro de 2004, não se aplicam às atividades profissionais acima relacionadas.

7. Entidade de Classe

NENH<u>UM</u>A 8. Ass EDSON BENICIODE **CARVALHO**

Assinado digitalmente por EDSON
BENÍCIO DE CARVALHO JÚNIOR
DN CN-EDSON BENÍCIO DE
CARVALHO DIMORIO
E-EDSONBENICIO @GMAIL COM
Razão: Eu sou o autor dete documento
Localização Datelocalização de
assinatura aqui
Data: 2022.083 12.28:40-03'00'
Fortire aday Arsão: 10-06.

Data 2022.08.31 12:28:40-03 EDSON BENICIO DE CARVACADO TUNIOR - CPF:

Informações

- A ART é válida somente quando quitada, mediante apresentação do comprovante de pagamento ou conferência no site do Crea. - A autenticidade deste documento pode ser verificada no site: www.creadf.org.br

A guarda da via assinada da ART será de responsabilidade do profissional e do contratante com o objetivo de documentar o vínculo contratual.

https://art.creadf.org.br/art1025/funcoes/form_impressao_tos.php?NUMERO_DA_ART=0720220070226

1/2

RELATÓRIO DE MONITORAMENTO ACÚSTICO – AEROPORTO DE ARACAJÚ 1/2023

25/08/22, 15:36

https://art.creadf.org.br/art1025/funcoes/form_impressao_tos.php?NUMERO_DA_ART=0720220070226

847.XXX.XXX-49

AEROPORTOS DO NORDESTE DO BRASIL S.A CNPJ: 33.919.741/0001-20

www.creadf.org.br informacao@creadf.org.br Tel: (61) 3961-2800

Valor da ART: R\$ 233.94 Registrada em: 25/08/2022 Valor Pago: R\$ 233,94 Nosso Número/Baixa: 0122059505

 $https://art.creadf.org.br/art1025/funcoes/form_impressao_tos.php?NUMERO_DA_ART=0720220070226$

2/2

Disponível em https://art.creadf.org.br/art1025/funcoes/form_autenticidade_art.php?NUMERO_DA_ART=0720220070226

